Publication:JUNO publications
Contents
Conceptual Design Reports
JUNO Conceptual Design Report, https://arxiv.org/abs/1508.07166
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, https://arxiv.org/abs/2005.08745
Collaboration Papers (with publication information)
1) Neutrino Physics with JUNO, J.Phys.G 43 (2016) 3, 030401 https://doi.org/10.1088/0954-3899/43/3/030401 https://arxiv.org/abs/1507.05613
2) JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123, (2022) 103927 https://doi.org/10.1016/j.ppnp.2021.103927 https://arxiv.org/abs/2104.02565
3) Radioactivity control strategy for the JUNO detector, J. High Energy Phys. 11, (2021) 102 https://doi.org/10.1007/JHEP11(2021)102 https://arxiv.org/abs/2107.03669
4) Calibration strategy of the JUNO experiment, J. High Energy Phys. 03, (2021) 004 https://doi.org/10.1007/JHEP03(2021)004 https://arxiv.org/abs/2011.06405
5) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS, Eur. Phys. J. C 81, (2021) 973 https://doi.org/10.1140/epjc/s10052-021-09544-4 https://arxiv.org/abs/2103.16900
6) JUNO sensitivity to low energy atmospheric neutrino spectra, Eur. Phys. J. C 81, (2021) 887 https://doi.org/10.1140/epjc/s10052-021-09565-z https://arxiv.org/abs/2103.09908
7) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO, Chin. Phys. C 45, (2021) 023004 https://doi.org/10.1088/1674-1137/abd92a https://arxiv.org/abs/2006.11760
8) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Methods A 988, (2021) 164823 https://doi.org/10.1016/j.nima.2020.164823 https://arxiv.org/abs/2007.00314
9) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, https://arxiv.org/abs/2112.14450, submitted to JHEP.
10) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, https://arxiv.org/abs/2204.13249, submitted to CPC.
11) Mass Testing and Characterization of 20-inch PMTs for JUNO, https://arxiv.org/abs/2205.08629, submitted to EPJC.
12) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, https://arxiv.org/abs/2205.08830, submitted to JCAP.
Physics Papers (by memebers of JUNO collaboration)
Mass Ordering Proposal
(1) Determination of the neutrino mass hierarchy at an intermediate baseline, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103, https://doi.org/10.1103/PhysRevD.78.111103
(2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007 https://doi.org/10.1103/PhysRevD.79.073007
(3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, Phys. Rev. D 88, (2013) 013008 https://doi.org/10.1103/PhysRevD.88.013008
Reactor Neutrinos
(1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small? Yu-Feng Li, Yifang Wang, Zhi-zhong Xing, Chin.Phys.C 40 (2016) 9, 091001. https://doi.org/10.1088/1674-1137/40/9/091001 https://arxiv.org/abs/1605.00900
(2) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett.B 782 (2018) 578-588 https://doi.org/10.1016/j.physletb.2018.05.079 https://arxiv.org/abs/1802.04964
(3) Synergies and prospects for early resolution of the neutrino mass ordering, Anatael Cabrera, et al., Sci.Rep. 12 (2022) 1, 5393 https://doi.org/10.1038/s41598-022-09111-1 https://arxiv.org/abs/2008.11280
(4) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments, Zhaokan Chen, et al., Eur.Phys.J.C 80 (2020) 12, 1112. https://doi.org/10.1140/epjc/s10052-020-08664-7 https://arxiv.org/abs/2004.11659
(5) Why matter effects matter for JUNO, Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke, Phys.Lett.B 803 (2020) 135354. https://doi.org/10.1016/j.physletb.2020.135354 https://arxiv.org/abs/1910.12900
(6) A framework for testing leptonic unitarity by neutrino oscillation experiments, C.S. Fong, H. Minakata, H. Nunokawa, JHEP 2017 (2017) 114. https://doi.org/10.1007/JHEP02(2017)114 https://arxiv.org/abs/1609.08623
(7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors, Hongxin Wang et al., Nucl.Phys.B 918 (2017) 245-256. https://doi.org/10.1016/j.nuclphysb.2017.03.002 https://arxiv.org/abs/1602.04442
Solar Neutrinos
(1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment, Lukas Bieger, et al., https://arxiv.org/abs/2109.10782
(2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors, Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu, Chin.Phys.Lett. 38 (2021) 11, 111401. https://doi.org/10.1088/0256-307X/38/11/111401 https://arxiv.org/abs/2103.11771
(3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos, S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov, Nucl.Phys.B 944 (2019) 114661. https://doi.org/10.1016/j.nuclphysb.2019.114661 https://arxiv.org/abs/1905.05464
Atmospheric Neutrinos
(1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions, Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou Phys.Rev.D 103 (2021) 5, 053001 https://doi.org/10.1103/PhysRevD.103.053001 https://arxiv.org/abs/2008.04633
(2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements, Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen Phys.Rev.D 103 (2021) 5, 053002 https://doi.org/10.1103/PhysRevD.103.053002 https://arxiv.org/abs/2009.04085
(3) Low energy neutrinos from stopped muons in the Earth, Wan-Lei Guo, Phys.Rev.D 99 (2019) 7, 073007. https://doi.org/10.1103/PhysRevD.99.073007 https://arxiv.org/abs/1812.04378
Supernova Neutrinos
(1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu JCAP 10 (2020) 038 https://doi.org/10.1088/1475-7516/2020/10/038 https://arxiv.org/abs/2005.09168
(2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou JCAP 05 (2020) 049 https://doi.org/10.1088/1475-7516/2020/05/049 https://arxiv.org/abs/2003.03982
(3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou Phys.Rev.D 99 (2019) 12, 123009 https://doi.org/10.1103/PhysRevD.99.123009 https://arxiv.org/abs/1903.04781
(4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou Phys.Rev.D 97 (2018) 6, 063014 https://doi.org/10.1103/PhysRevD.97.063014 https://arxiv.org/abs/1712.06985
(5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors, Jia-Shu Lu, Yu-Feng Li, and Shun Zhou Phys.Rev.D 94 (2016) 2, 023006 https://doi.org/10.1103/PhysRevD.94.023006 https://arxiv.org/abs/1605.07803
(6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou JCAP 05 (2015) 044 https://doi.org/10.1088/1475-7516/2015/05/044 https://arxiv.org/abs/1412.7418
(7) Testing MSW effect in Supernova Explosion with Neutrino event rates, Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin https://arxiv.org/abs/2001.08543
Diffuse Supernova Neutrino Background
(1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO, Yu-Feng Li, Mark Vagins, Michael Wurm Universe 8 (2022) 3, 181 https://doi.org/10.3390/universe8030181 https://arxiv.org/abs/2201.12920
Geo Neutrinos
(1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO, RuohanGao, et al, Phys.Earth Planet.Interiors 299 (2020) 106409. https://doi.org/10.1016/j.pepi.2019.106409 https://arxiv.org/abs/1903.11871
(2) Non-negligible oscillation effects in the crustal geoneutrino calculations, Xin Mao, Ran Han, and Yu-Feng Li, Phys.Rev.D 100 (2019) 11, 113009. https://doi.org/10.1103/PhysRevD.100.113009 https://arxiv.org/abs/1911.12302
(3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment M. Reguzzoni, et al, J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249. https://doi.org/10.1029/2018JB016681 https://arxiv.org/abs/1901.01945
(4) Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova, Chin.Phys.C 40 (2016) 3, 033003. https://doi.org/10.1088/1674-1137/40/3/033003 https://arxiv.org/abs/1510.01523
Dark Matter
(1) Constraining primordial black holes as dark matter at JUNO, Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang, Phys.Rev.D 103 (2021) 4, 043010. https://doi.org/10.1103/PhysRevD.103.043010 https://arxiv.org/abs/2010.16053
(2) Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 01 (2016) 039. https://doi.org/10.1088/1475-7516/2016/01/039 https://arxiv.org/abs/1511.04888
Nucleon Decay
(1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code, Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan, Phys.Lett.B 831 (2022) 137183 https://doi.org/10.1016/j.physletb.2022.137183 https://arxiv.org/abs/2108.11376
(2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun, Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang, JCAP, in press. https://arxiv.org/abs/2201.02386
New Physics
(1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays, Jun Cao, et al, Chin.Phys.C 44 (2020) 3, 031001. https://doi.org/10.1088/1674-1137/44/3/031001 https://arxiv.org/abs/1908.08355
(2) Physics potential of searching for 0νββ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys.C 41 (2017) 5, 053001. https://doi.org/10.1088/1674-1137/41/5/053001 https://arxiv.org/abs/1610.07143
(3) Exploring detection of nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys.Rev.D 95 (2017) 1, 015010. https://doi.org/10.1103/PhysRevD.95.015010 https://arxiv.org/abs/1611.00166
(4) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s), Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, JHEAp 28 (2020) 1-9. https://doi.org/10.1016/j.jheap.2020.10.001
(5) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector, Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, Nucl.Phys.B 964 (2021) 115304. https://doi.org/10.1016/j.nuclphysb.2021.115304 https://arxiv.org/abs/2009.06450
(6) Constraining visible neutrino decay at KamLAND and JUNO, Yago P. Porto-Silva, et al., Eur.Phys.J.C 80 (2020) 10, 999. https://doi.org/10.1140/epjc/s10052-020-08573-9 https://arxiv.org/abs/2002.12134
(7) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment, Yu-Feng Li, Zhen-hua Zhao, Phys.Rev.D 90 (2014) 11, 113014. https://doi.org/10.1103/PhysRevD.90.113014 https://arxiv.org/abs/1409.6970
(8) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions, Yu-Feng Li, Ye-Ling Zhou, Nucl.Phys.B 888 (2014) 137-153. https://doi.org/10.1016/j.nuclphysb.2014.09.013 https://arxiv.org/abs/1408.6301
Others
(1) Potential of octant degeneracy resolution in JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling Chin.Phys.C 43 (2019) 3, 033001. https://doi.org/10.1088/1674-1137/43/3/033001 https://arxiv.org/abs/1808.03795
(2) The possibility of leptonic CP-violation measurement with JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling, Nucl.Phys.B 931 (2018) 437-445. https://doi.org/10.1016/j.nuclphysb.2018.05.003 https://arxiv.org/abs/1802.03677
Technical Papers (by memebers of JUNO collaboration)
Central Detector
(1) The stress measurement system for the JUNO Central Detector acrylic panels, X. Yang, et al., JINST 16 (2021) 12, P12040. https://doi.org/10.1088/1748-0221/16/12/P12040
(2) Structure design and compression experiment of the supporting node for JUNO PMMA detector, Xiaohui Qian, et al., Radiat Detect Technol Methods 4 (2020) 345-355. https://doi.org/10.1007/s41605-020-00190-0
(3) A practical approach of high precision U and Th concentration measurement in acrylic, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1004 (2021) 165377. https://doi.org/10.1016/j.nima.2021.165377 https://arxiv.org/abs/2011.06817
(4) Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS, Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen, Nucl.Instrum.Meth.A 941 (2019) 162335. https://doi.org/10.1016/j.nima.2019.162335 https://arxiv.org/abs/2003.12229
(5) The measurement system of acrylic transmittance for the JUNO central detector, Xiaoyu Yang, et al., Radiat Detect Technol Methods 4, 284–292 (2020). https://doi.org/10.1007/s41605-020-00182-0
(6) FE Analysis on the Thermoforming Behaviour of Large Spherical PMMA Panelapplied in JUNO, Xiaohui Qian, et al., IOP Conf. Ser.: Mater. Sci. Eng. 774 012148. https://doi.org/10.1088/1757-899x/774/1/012148
(7) Thermal reliability analysis of the central detector of JUNO, Xiaoyu Yang, et al., Radiat Detect Technol Methods 3, 64 (2019). https://doi.org/10.1007/s41605-019-0142-y
(8) The design of the small prototype for the central detector of JUNO, Xiaoyu Yang, et al, Radiat Detect Technol Methods 2, 46 (2018). https://doi.org/10.1007/s41605-018-0073-z
(9) 222Rn contamination mechanisms on acrylic surfaces, M. Nastasi, et al., https://arxiv.org/abs/1911.04836
Liquid Scintillator
(1) Measurements of Rayleigh Ratios in Linear Alkylbenzene, Miao Yu et al., https://arxiv.org/abs/2203.03126
(2) Exploring the intrinsic energy resolution of liquid scintillator to approximately 1 MeV electrons, Y. Deng, et al., JINST 17 (2022) 04, P04018. https://doi.org/10.1088/1748-0221/17/04/P04018 https://arxiv.org/abs/2203.05200
(3) Development of water extraction system for liquid scintillator purification of JUNO Y. Deng, et al., Nucl.Instrum.Meth.A 1027 (2022) 166251. https://doi.org/10.1016/j.nima.2021.166251 https://arxiv.org/abs/2109.07317
(4) The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay, Wenqi Yan, et al., Nucl.Instrum.Meth.A 996 (2021) 165109. https://doi.org/10.1016/j.nima.2021.165109 https://arxiv.org/abs/2011.05655
(5) Radon activity measurement of JUNO nitrogen, X. Yu, et al., JINST 15 (2020) 09, P09001. https://doi.org/10.1088/1748-0221/15/09/P09001
(6) Thermal diffusivity and specific heat capacity of linear alkylbenzene Wenjie Wu, et al., Phys.Scripta 94 (2019) 10, 105701. https://doi.org/10.1088/1402-4896/ab1cea https://arxiv.org/abs/1904.12147
(7) Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO, Mario Schwarz, et al., Nucl.Instrum.Meth.A 922 (2019) 64-70. https://doi.org/10.1016/j.nima.2018.12.068. https://arxiv.org/abs/1804.09456
(8) Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment, Dewen Cao, et al., Nucl.Instrum.Meth.A 927 (2019) 230-235. https://doi.org/10.1016/j.nima.2019.01.077 https://arxiv.org/abs/1801.08363
(9) Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene, Xiang Zhou, et al., Phys. Scr. 90 (2015) 055701. https://doi.org/10.1088/0031-8949/90/5/055701 https://arxiv.org/abs/1408.0877
(10) Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors, Xiang Zhou, et al., Rev. Sci. Instrum. 86 (2015) 073310. https://doi.org/10.1063/1.4927458 https://arxiv.org/abs/1504.00987
(11) Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors, Xiang Zhou, et al., Eur. Phys. J. C 75 (2015) 545. https://doi.org/10.1140/epjc/s10052-015-3784-z https://arxiv.org/abs/1504.00986
PMT Instrumentation
(1) A container-based facility for testing 20'000 20-inch PMTs for JUNO, B. Wonsak, et al., JINST 16 (2021) 08, T08001. https://doi.org/10.1088/1748-0221/16/08/T08001 https://arxiv.org/abs/2103.10193
(2) Gain and charge response of 20” MCP and dynode PMTs H.Q. Zhang, et al., JINST 16 (2021) 08, T08009. https://doi.org/10.1088/1748-0221/16/08/T08009 https://arxiv.org/abs/2103.14822
(3) A quantitative approach to select PMTs for large detectors, L.J. Wen, et al., Nucl.Instrum.Meth.A 947 (2019) 162766. https://doi.org/10.1016/j.nima.2019.162766 https://arxiv.org/abs/1903.12595
(4) A study of the new hemispherical 9-inch PMT, F. Luo, et al., JINST 14 (2019) 02, T02004. https://doi.org/10.1088/1748-0221/14/02/T02004 https://arxiv.org/abs/1801.02737
(5) Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang, et al., Nucl.Instrum.Meth.A 898 (2018) 67-71. https://doi.org/10.1016/j.nima.2018.05.008 https://arxiv.org/abs/1710.09965
(6) Wide field-of-view and high-efficiency light concentrator, Yu Zhi, Ye Liang, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth.A 885 (2018) 114-118. https://doi.org/10.1016/j.nima.2017.12.003 https://arxiv.org/abs/1703.07527
Small PMTs
(1) CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes, S. Conforti, et al., JINST 16 (2021) 05, P05010. https://doi.org/10.1088/1748-0221/16/05/P05010 https://arxiv.org/abs/2012.01565
(2) Characterization of 3-inch photomultiplier tubes for the JUNO central detector, Nan Li, et al., Radiat Detect Technol Methods 3 (2019) 6. https://doi.org/10.1007/s41605-018-0085-8
(3) Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO, Diru Wu, et al., https://arxiv.org/abs/2204.02612
Veto Detectors
(1) The study of active geomagnetic shielding coils system for JUNO, G. Zhang, et al., JINST 16 (2021) 12, A12001. https://doi.org/10.1088/1748-0221/16/10/T10004 https://arxiv.org/abs/2106.09998
(2) Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory L.F. Xie, et al., Nucl.Instrum.Meth.A 976 (2020) 164266. https://doi.org/10.1016/j.nima.2020.164266 https://arxiv.org/abs/1906.06895
(3) The development of 222Rn detectors for JUNO prototype, Y. P. Zhang,, et al., Radiat Detect Technol Methods 2 (2018) 5. https://doi.org/10.1007/s41605-017-0029-8 https://arxiv.org/abs/1710.03401
(4) Discriminating cosmic muons and radioactivity using a liquid scintillator fiber detector, Y.P. Zhang, et al., JINST 12 (2017) 03, P03015. https://doi.org/10.1088/1748-0221/12/03/P03015 https://arxiv.org/abs/1608.08307
Electronics and Trigger
(1) Embedded readout electronics R&D; for the large PMTs in the JUNO experiment, M.Bellatoa, et al., Nucl.Instrum.Meth.A 985 (2021) 164600. https://doi.org/10.1016/j.nima.2020.164600 https://arxiv.org/abs/2003.08339
(2) A 4 GHz phase locked loop design in 65 nm CMOS for the Jiangmen Underground Neutrino Observatory detector, N. Parkalian, et al., JINST 13 (2018)02, P02010. https://doi.org/10.1088/1748-0221/13/02/p02010
Calibration
(1) A Precise Method to Determine the Energy Scale and Resolution using Gamma Calibration Sources in a Liquid Scintillator Detector, Feiyang Zhang, et al., JINST 16 (2021) T08007. https://doi.org/10.1088/1748-0221/16/08/T08007 https://arxiv.org/abs/2106.06424
(2) The automatic calibration unit in JUNO, Jiaqi Hui, et al., JINST 16 (2021) 08, T08008. https://doi.org/10.1088/1748-0221/16/08/T08008 https://arxiv.org/abs/2104.02579
(3) Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO, Yuhang Guo, et al., JINST 16 (2021) T07005. https://doi.org/10.1088/1748-0221/16/07/T07005 https://arxiv.org/abs/2103.04602
(4) Cable loop calibration system for Jiangmen Underground Neutrino Observatory, Yuanyuan Zhang, et al., Nucl.Instrum.Meth.A 988 (2021) 164867. https://doi.org/10.1016/j.nima.2020.164867 https://arxiv.org/abs/2011.02183
(5) Design of the Guide Tube Calibration System for the JUNO experiment, Yuhang Guo, et al., JINST 14 (2019) 09, T09005. https://doi.org/10.1088/1748-0221/14/09/T09005 https://arxiv.org/abs/1905.02077
(6) Ultrasonic positioning system for the calibration of central detector, Guo-Lei Zhu, et al., Nucl.Sci.Tech. 30 (2019) 1, 5. https://doi.org/10.1007/s41365-018-0530-x
TAO
(1) Calibration Strategy of the JUNO-TAO Experiment, Hangkun Xu, et al., https://arxiv.org/abs/2204.03256
(2) A liquid scintillator for a neutrino Detector working at -50 degree, Zhangquan Xie, et al., Nucl.Instrum.Meth.A 1009 (2021) 165459. https://doi.org/10.1016/j.nima.2021.165459 https://arxiv.org/abs/2012.11883
(3) Study of Silicon Photomultiplier Performance at Different Temperatures, N.Anfimov, et al., Nucl.Instrum.Meth.A 997 (2021) 165162. https://doi.org/10.1016/j.nima.2021.165162 https://arxiv.org/abs/2005.10665
(4) Reflectance of Silicon Photomultipliers in Linear Alkylbenzene, W. Wang, et al., Nucl.Instrum.Meth.A 973 (2020) 164171. https://doi.org/10.1016/j.nima.2020.164171 https://arxiv.org/abs/2002.04218
(5) Evaluation of the KLauS ASIC at low temperature, Wei Wang, et al., Nucl.Instrum.Meth.A 996 (2021) 165110. https://doi.org/10.1016/j.nima.2021.165110 https://arxiv.org/abs/2011.05643
Simulation and Software Framework
(1) A new optical model of a photomultiplier tube, Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang, Eur.Phys.J.C 82 (2022) 4, 329. https://doi.org/10.1140/epjc/s10052-022-10288-y https://arxiv.org/abs/2204.02703
(2) Improving the Energy Resolution of the Reactor Antineutrino Energy Reconstruction with Positron Direction, Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang, RDTM, 4 (2020) 356–361. https://doi.org/10.1007/s41605-020-00191-z https://arxiv.org/abs/2005.05034
(3) A complete optical model for liquid-scintillator detectors, Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen, Nucl.Instrum.Meth.A 967 (2020) 163860. https://doi.org/10.1016/j.nima.2020.163860 https://arxiv.org/abs/2003.12212
(4) A semi-analytical energy response model for low-energy events in JUNO, P. Kampmann, Y. Cheng, L. Ludhova, JINST 15 (2020) 10, P10007. https://doi.org/10.1088/1748-0221/15/10/P10007 https://arxiv.org/abs/2006.03461
(5) Capability of detecting low energy events in JUNO Central Detector, X. Fang, et al., JINST 15 (2020) 03, P03020. https://doi.org/10.1088/1748-0221/15/03/P03020 https://arxiv.org/abs/1912.01864
(6) Fast Muon Simulation in the JUNO Central Detector, Tao Lin, et al., Chin.Phys.C 40 (2016) 8, 086201. https://doi.org/10.1088/1674-1137/40/8/086201 https://arxiv.org/abs/1602.00056
(7) GDML based geometry management system for offline software in JUNO, Kaijie Li, et al., Nucl.Instrum.Meth.A 908 (2018) 43-48. https://doi.org/10.1016/j.nima.2018.08.008
(8) A ROOT Based Event Display Software for JUNO, Z. You, et al. JINST 13 (2018) 02, T02002. https://doi.org/10.1088/1748-0221/13/02/T02002 https://arxiv.org/abs/1712.07603
(9) Design and Development of JUNO Event Data Model, Teng Li, et al., Chin.Phys.C 41 (2017) 6, 066201. https://doi.org/10.1088/1674-1137/41/6/066201 https://arxiv.org/abs/1702.04100
Reconstruction
(1) Improving the machine learning based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs, Zi-Yuan Li, et al., https://arxiv.org/abs/2205.04039
(2) Reconstruction of Muon Bundle in the JUNO Central Detector, Cheng-Feng Yang, et al., https://arxiv.org/abs/2201.11321
(3) Vertex and energy reconstruction in JUNO with machine learning methods, Zhen Qian, et al., Nucl.Instrum.Meth.A 1010 (2021) 165527. https://doi.org/10.1016/j.nima.2021.165527 https://arxiv.org/abs/2101.04839
(4) Improving the energy uniformity for large liquid scintillator detectors, Guihong Huang, et al., Nucl.Instrum.Meth.A 1001 (2021) 165287. https://doi.org/10.1016/j.nima.2021.165287 https://arxiv.org/abs/2102.03736
(5) Event vertex and time reconstruction in large-volume liquid scintillator detectors, Zi-Yuan Li, et al., Nucl.Sci.Tech. 32 (2021) 5, 49. https://doi.org/10.1007/s41365-021-00885-z https://arxiv.org/abs/2101.08901
(6) Particle Identification at MeV Energies in JUNO, H. Rebber, L. Ludhova, B. Wonsak and Y. Xu, JINST 16 (2021) 01, P01016. https://doi.org/10.1088/1748-0221/16/01/P01016 https://arxiv.org/abs/2007.02687
(7) Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang, et al., JINST 14 (2019) 08, T08002. https://doi.org/10.1088/1748-0221/14/08/T08002 https://arxiv.org/abs/1905.03648
(8) A new method of energy reconstruction for large spherical liquid scintillator detectors, W. Wu, M. He, X. Zhou and H. Qiao, JINST 14 (2019) 03, P03009. https://doi.org/10.1088/1748-0221/14/03/P03009 https://arxiv.org/abs/1812.01799
(9) Muon Tracking with the fastest light in the JUNO Central Detector, Kun Zhang, Miao He, Weidong Li, Jilei Xu, Radiat Detect Technol Methods 2 (2018) 13. https://doi.org/10.1007/s41605-018-0040-8 https://arxiv.org/abs/1803.10407
(10) A vertex reconstruction algorithm in the central detector of JUNO, Q. Liu, et al., JINST 13 (2018) 09, T09005. https://doi.org/10.1088/1748-0221/13/09/T09005 https://arxiv.org/abs/1803.09394
(11) Muon reconstruction with a geometrical model in JUNO C. Genster, et al., JINST 13 (2018) 03, T03003. https://doi.org/10.1088/1748-0221/13/03/T03003 https://arxiv.org/abs/1906.01912
(12) Charge reconstruction in large-area photomultipliers, M. Grassi, et al., JINST 13 (2018) 02, P02008. https://doi.org/10.1088/1748-0221/13/02/P02008 https://arxiv.org/abs/1801.08690