Publication:JUNO publications

From JUNOWiki

Conceptual Design Reports

JUNO Conceptual Design Report,

TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution,

Collaboration Papers


2) Model Independent Approach of the JUNO B8 Solar Neutrino Program, ApJ 965 (2024) 122,


1) The Design and Technology Development of the JUNO Central Detector,

2) Real-time monitoring for the next core-collapse supernova in JUNO JCAP 01 (2024) 057, e-Print: 2309.07109 [hep-ex],

3) JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo, JCAP 09 (2023) 001 • e-Print: 2306.09567 [hep-ex],

4) The JUNO experiment Top Tracker, Nucl.Instrum.Meth.A 1057 (2023) 168680 • e-Print: 2303.05172 [hep-ex]

4) JUNO sensitivity to Be-7, pep, and CNO solar neutrinos, JCAP 10 (2023) 022 • e-Print: 2303.03910 [hep-ex]


1) JUNO Sensitivity on Proton Decay p\to \bar\nu K^+ Searches, Chin.Phys.C 47 (2023) 11, 113002 • e-Print: 2212.08502 [hep-ex]

2) Model Independent Approach of the JUNO B8 Solar Neutrino Program,, Accepted for the publication in The Astrophysical Journal

3) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, Chin. Phys. C 46 (2022) 123001.

4) Mass Testing and Characterization of 20-inch PMTs for JUNO, Eur. Phys. J. C 82 (2022) 1168.

5) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, JCAP 10 (2022) 033.

6) JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123, (2022) 103927

7) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, JHEP 06 (2022) 062.


6) Radioactivity control strategy for the JUNO detector, J. High Energy Phys. 11, (2021) 102.

7) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS, Eur. Phys. J. C 81, (2021) 973

8) JUNO sensitivity to low energy atmospheric neutrino spectra, Eur. Phys. J. C 81, (2021) 887

9) Calibration strategy of the JUNO experiment, J. High Energy Phys. 03, (2021) 004

10) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO, Chin. Phys. C 45, (2021) 023004

11) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Methods A 988, (2021) 164823


12) Neutrino Physics with JUNO, J.Phys.G 43 (2016) 3, 030401

Physics Papers (by memebers of JUNO collaboration)

Mass Ordering Proposal

(1) Determination of the neutrino mass hierarchy at an intermediate baseline, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103,

(2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007

(3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, Phys. Rev. D 88, (2013) 013008

Reactor Neutrinos

(1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small? Yu-Feng Li, Yifang Wang, Zhi-zhong Xing, Chin.Phys.C 40 (2016) 9, 091001.

(2) Synergies and prospects for early resolution of the neutrino mass ordering, Anatael Cabrera, et al., Sci.Rep. 12 (2022) 1, 5393

(3) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments, Zhaokan Chen, et al., Eur.Phys.J.C 80 (2020) 12, 1112.

(4) Why matter effects matter for JUNO, Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke, Phys.Lett.B 803 (2020) 135354.

(5) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett.B 782 (2018) 578-588

(6) A framework for testing leptonic unitarity by neutrino oscillation experiments, C.S. Fong, H. Minakata, H. Nunokawa, JHEP 2017 (2017) 114.

(7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors, Hongxin Wang, et al., Nucl.Phys.B 918 (2017) 245-256.

(8) Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering, S. Aiello, et al., JHEP 03 (2022) 055.

(9) Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, M.G. Aartsen, et al., Phys.Rev.D 101 (2020) 3, 032006.

Solar Neutrinos

(1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment, Lukas Bieger, et al., Eur.Phys.J.C 82 (2022) 9, 779.

(2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors, Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu, Chin.Phys.Lett. 38 (2021) 11, 111401.

(3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos, S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov, Nucl.Phys.B 944 (2019) 114661.

Atmospheric Neutrinos

(1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions, Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou Phys.Rev.D 103 (2021) 5, 053001

(2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements, Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen Phys.Rev.D 103 (2021) 5, 053002

(3) Low energy neutrinos from stopped muons in the Earth, Wan-Lei Guo, Phys.Rev.D 99 (2019) 7, 073007.

Supernova Neutrinos

(1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu JCAP 10 (2020) 038

(2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou JCAP 05 (2020) 049

(3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou Phys.Rev.D 99 (2019) 12, 123009

(4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou Phys.Rev.D 97 (2018) 6, 063014

(5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors, Jia-Shu Lu, Yu-Feng Li, and Shun Zhou Phys.Rev.D 94 (2016) 2, 023006

(6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou JCAP 05 (2015) 044

(7) Testing MSW effect in Supernova Explosion with Neutrino event rates, Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin

Diffuse Supernova Neutrino Background

(1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO, Yu-Feng Li, Mark Vagins, Michael Wurm Universe 8 (2022) 3, 181

Geo Neutrinos

(1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO, RuohanGao, et al, Phys.Earth Planet.Interiors 299 (2020) 106409.

(2) Non-negligible oscillation effects in the crustal geoneutrino calculations, Xin Mao, Ran Han, and Yu-Feng Li, Phys.Rev.D 100 (2019) 11, 113009.

(3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment M. Reguzzoni, et al, J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249.

(4) Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova, Chin.Phys.C 40 (2016) 3, 033003.

Dark Matter

(1) Constraining primordial black holes as dark matter at JUNO, Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang, Phys.Rev.D 103 (2021) 4, 043010.

(2) Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 01 (2016) 039.

Nucleon Decay

(1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code, Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan, Phys.Lett.B 831 (2022) 137183

(2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun, Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang, JCAP, in press.

New Physics

(1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays, Jun Cao, et al, Chin.Phys.C 44 (2020) 3, 031001.

(2) Physics potential of searching for 0νββ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys.C 41 (2017) 5, 053001.

(3) Light dark bosons in the JUNO-TAO neutrino detector, M. Smirnov, et al., Phys.Rev.D 104 (2021) 11, 116024.

(4) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector, Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, Nucl.Phys.B 964 (2021) 115304.

(5) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s), Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, JHEAp 28 (2020) 1-9.

(6) Constraining visible neutrino decay at KamLAND and JUNO, Yago P. Porto-Silva, et al., Eur.Phys.J.C 80 (2020) 10, 999.

(7) Exploring detection of nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys.Rev.D 95 (2017) 1, 015010.

(8) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment, Yu-Feng Li, Zhen-hua Zhao, Phys.Rev.D 90 (2014) 11, 113014.

(9) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions, Yu-Feng Li, Ye-Ling Zhou, Nucl.Phys.B 888 (2014) 137-153.


(1) Potential of octant degeneracy resolution in JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling Chin.Phys.C 43 (2019) 3, 033001.

(2) The possibility of leptonic CP-violation measurement with JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling, Nucl.Phys.B 931 (2018) 437-445.

Technical Papers (by memebers of JUNO collaboration)

Central Detector

(1) Laser measurement system for acrylic transmittance of JUNO central detector, Zhaohan Li, et al., Rad.Det.Tech.Meth. 5 (2021) 3, 356-363

(2) The stress measurement system for the JUNO Central Detector acrylic panels, X. Yang, et al., JINST 16 (2021) 12, P12040.

(3) Structure design and compression experiment of the supporting node for JUNO PMMA detector, Xiaohui Qian, et al., Radiat Detect Technol Methods 4 (2020) 345-355.

(4) The measurement system of acrylic transmittance for the JUNO central detector, Xiaoyu Yang, et al., Radiat Detect Technol Methods 4, 284–292 (2020).

(5) FE Analysis on the Thermoforming Behaviour of Large Spherical PMMA Panelapplied in JUNO, Xiaohui Qian, et al., IOP Conf. Ser.: Mater. Sci. Eng. 774 012148.

(6) Thermal reliability analysis of the central detector of JUNO, Xiaoyu Yang, et al., Radiat Detect Technol Methods 3, 64 (2019).

(7) The design of the small prototype for the central detector of JUNO, Xiaoyu Yang, et al, Radiat Detect Technol Methods 2, 46 (2018).

Liquid Scintillator

(1) Measurements of Rayleigh Ratios in Linear Alkylbenzene, Miao Yu et al., Rev.Sci.Inst. 93 (2022) 063106.

(2) Exploring the intrinsic energy resolution of liquid scintillator to approximately 1 MeV electrons, Y. Deng, et al., JINST 17 (2022) 04, P04018.

(3) Development of water extraction system for liquid scintillator purification of JUNO Y. Deng, et al., Nucl.Instrum.Meth.A 1027 (2022) 166251.

(4) The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay, Wenqi Yan, et al., Nucl.Instrum.Meth.A 996 (2021) 165109.

(5) Radon activity measurement of JUNO nitrogen, X. Yu, et al., JINST 15 (2020) 09, P09001.

(6) Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability, P. Lombardi, et al., Nucl.Instrum.Meth.A 925 (2019) 6-17.

(7) Thermal diffusivity and specific heat capacity of linear alkylbenzene Wenjie Wu, et al., Phys.Scripta 94 (2019) 10, 105701.

(8) Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO, Mario Schwarz, et al., Nucl.Instrum.Meth.A 922 (2019) 64-70.

(9) Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment, Dewen Cao, et al., Nucl.Instrum.Meth.A 927 (2019) 230-235.

(10) Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene, Xiang Zhou, et al., Phys. Scr. 90 (2015) 055701.

(11) Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors, Xiang Zhou, et al., Rev. Sci. Instrum. 86 (2015) 073310.

(12) Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors, Xiang Zhou, et al., Eur. Phys. J. C 75 (2015) 545.

PMT Instrumentation

(1) Design of the PMT underwater cascade implosion protection system for JUNO, M. He, et al., JINST 18 (2023) 02, P02013.

(2) Database system for managing 20,000 20-inch PMTs at JUNO, J. Wang, et al., Nucl.Sci.Tech. 33 (2022) 24.

(3) A container-based facility for testing 20'000 20-inch PMTs for JUNO, B. Wonsak, et al., JINST 16 (2021) 08, T08001.

(4) Gain and charge response of 20” MCP and dynode PMTs, H.Q. Zhang, et al., JINST 16 (2021) 08, T08009.

(5) A quantitative approach to select PMTs for large detectors, L.J. Wen, et al., Nucl.Instrum.Meth.A 947 (2019) 162766.

(6) Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang, et al., JINST 14 (2019) 08, T08002.

(7) A study of the new hemispherical 9-inch PMT, F. Luo, et al., JINST 14 (2019) 02, T02004.

(8) Study on Relative Collection Efficiency of PMTs with Point Light, H.Q. Zhang, et al., RDTM 3 (2019) 20.

(9) The study of linearity and detection efficiency for 20″ photomultiplier tube, A.B. Yang, et al., RDTM 3 (2019) 11.

(10) Signal Optimization with HV divider of MCP-PMT for JUNO, F.J. Luo, et al., Springer Proc.Phys. 213 (2018) 309-314.

(11) Large photocathode 20-inch PMT testing methods for the JUNO experiment, N. Anfimov, et al., JINST 12 (2017) 06, C06017.

(12) Study of TTS for a 20-inch dynode PMT, D.H. Liao, et al., Chin.Phys.C 41 (2017) 7, 076001.

(13) PMT overshoot study for the JUNO prototype detector, F.J. Luo, et al., Chin.Phys.C 40 (2016) 9, 096002.

Small PMTs

(1) Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO, Diru Wu, et al., Radiat Detect Technol Methods 6 (2022) 349

(2) Mass production and characterization of 3-inch PMTs for the JUNO experiment, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1005 (2021) 165347.

(3) CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes, S. Conforti, et al., JINST 16 (2021) 05, P05010.

(4) Characterization of 3-inch photomultiplier tubes for the JUNO central detector, Nan Li, et al., Radiat Detect Technol Methods 3 (2019) 6.

Veto Detectors

(1) The study of active geomagnetic shielding coils system for JUNO, G. Zhang, et al., JINST 16 (2021) 12, A12001.

(2) Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory, L.F. Xie, et al., Nucl.Instrum.Meth.A 976 (2020) 164266.

(3) Study on the radon removal for the water system of Jiangmen Underground Neutrino Observatory, C. Guo, et al., Radiat Detect Technol Methods 2 (2018) 48.

(4) The development of 222Rn detectors for JUNO prototype, Y. P. Zhang,, et al., Radiat Detect Technol Methods 2 (2018) 5.

(5) Discriminating cosmic muons and radioactivity using a liquid scintillator fiber detector, Y.P. Zhang, et al., JINST 12 (2017) 03, P03015.

Electronics and Trigger

(1) Embedded readout electronics R&D; for the large PMTs in the JUNO experiment, M.Bellatoa, et al., Nucl.Instrum.Meth.A 985 (2021) 164600.

(2) A 4 GHz phase locked loop design in 65 nm CMOS for the Jiangmen Underground Neutrino Observatory detector, N. Parkalian, et al., JINST 13 (2018)02, P02010.


(1) A Precise Method to Determine the Energy Scale and Resolution using Gamma Calibration Sources in a Liquid Scintillator Detector, Feiyang Zhang, et al., JINST 16 (2021) T08007.

(2) The automatic calibration unit in JUNO, Jiaqi Hui, et al., JINST 16 (2021) 08, T08008.

(3) Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO, Yuhang Guo, et al., JINST 16 (2021) T07005.

(4) Cable loop calibration system for Jiangmen Underground Neutrino Observatory, Yuanyuan Zhang, et al., Nucl.Instrum.Meth.A 988 (2021) 164867.

(5) Design of the Guide Tube Calibration System for the JUNO experiment, Yuhang Guo, et al., JINST 14 (2019) 09, T09005.

(6) Ultrasonic positioning system for the calibration of central detector, Guo-Lei Zhu, et al., Nucl.Sci.Tech. 30 (2019) 1, 5.


(1) Detector optimization to reduce the cosmogenic neutron backgrounds in the TAO experiment, Ruhui Li, et al., JINST 17 (2022) 09, P09024.

(2) Calibration Strategy of the JUNO-TAO Experiment, Hangkun Xu, et al., Eur.Phys.J.C 82 (2022) 1112.

(3) A liquid scintillator for a neutrino Detector working at -50 degree, Zhangquan Xie, et al., Nucl.Instrum.Meth.A 1009 (2021) 165459.

(4) Study of Silicon Photomultiplier Performance at Different Temperatures, N.Anfimov, et al., Nucl.Instrum.Meth.A 997 (2021) 165162.

(5) Reflectance of Silicon Photomultipliers in Linear Alkylbenzene, W. Wang, et al., Nucl.Instrum.Meth.A 973 (2020) 164171.

(6) Evaluation of the KLauS ASIC at low temperature, Wei Wang, et al., Nucl.Instrum.Meth.A 996 (2021) 165110.

Low Background

(1) A practical approach of high precision U and Th concentration measurement in acrylic, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1004 (2021) 165377.

(2) Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS, Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen, Nucl.Instrum.Meth.A 941 (2019) 162335.

(3) 222Rn contamination mechanisms on acrylic surfaces, M. Nastasi, et al.,

(4) Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang, et al., Nucl.Instrum.Meth.A 898 (2018) 67-71.

Software Framework

(1) GDML based geometry management system for offline software in JUNO, Kaijie Li, et al., Nucl.Instrum.Meth.A 908 (2018) 43-48.

(2) A ROOT Based Event Display Software for JUNO, Z. You, et al. JINST 13 (2018) 02, T02002.

(3) Design and Development of JUNO Event Data Model, Teng Li, et al., Chin.Phys.C 41 (2017) 6, 066201.


(1) Simulation software of the JUNO experiment, Tao Lin, Yuxiang Hu,et al., Eur. Phys. J. C 83 (2023) 382.

(2) A new optical model of a photomultiplier tube, Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang, Eur.Phys.J.C 82 (2022) 4, 329.

(3) Improving the Energy Resolution of the Reactor Antineutrino Energy Reconstruction with Positron Direction, Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang, RDTM, 4 (2020) 356–361.

(4) A complete optical model for liquid-scintillator detectors, Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen, Nucl.Instrum.Meth.A 967 (2020) 163860.

(5) A semi-analytical energy response model for low-energy events in JUNO, P. Kampmann, Y. Cheng, L. Ludhova, JINST 15 (2020) 10, P10007.

(6) Capability of detecting low energy events in JUNO Central Detector, X. Fang, et al., JINST 15 (2020) 03, P03020.

(7) Fast Muon Simulation in the JUNO Central Detector, Tao Lin, et al., Chin.Phys.C 40 (2016) 8, 086201.


(1) Improving the machine learning based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs, Zi-Yuan Li, et al.,

(2) Reconstruction of Muon Bundle in the JUNO Central Detector, Cheng-Feng Yang, et al.,

(3) Muon reconstruction with a convolutional neural network in the JUNO detector, Yan Liu, et al., Rad.Det.Tech.Meth. 5 (2021) 3, 364-372.

(4) Vertex and energy reconstruction in JUNO with machine learning methods, Zhen Qian, et al., Nucl.Instrum.Meth.A 1010 (2021) 165527.

(5) Improving the energy uniformity for large liquid scintillator detectors, Guihong Huang, et al., Nucl.Instrum.Meth.A 1001 (2021) 165287.

(6) Event vertex and time reconstruction in large-volume liquid scintillator detectors, Zi-Yuan Li, et al., Nucl.Sci.Tech. 32 (2021) 5, 49.

(7) Particle Identification at MeV Energies in JUNO, H. Rebber, L. Ludhova, B. Wonsak and Y. Xu, JINST 16 (2021) 01, P01016.

(8) Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang, et al., JINST 14 (2019) 08, T08002.

(9) A new method of energy reconstruction for large spherical liquid scintillator detectors, W. Wu, M. He, X. Zhou and H. Qiao, JINST 14 (2019) 03, P03009.

(10) Muon Tracking with the fastest light in the JUNO Central Detector, Kun Zhang, Miao He, Weidong Li, Jilei Xu, Radiat Detect Technol Methods 2 (2018) 13.

(11) A vertex reconstruction algorithm in the central detector of JUNO, Q. Liu, et al., JINST 13 (2018) 09, T09005.

(12) Muon reconstruction with a geometrical model in JUNO C. Genster, et al., JINST 13 (2018) 03, T03003.

(13) Charge reconstruction in large-area photomultipliers, M. Grassi, et al., JINST 13 (2018) 02, P02008.