|
|
Line 30: |
Line 30: |
| | | |
| ==== JUNO publications ==== | | ==== JUNO publications ==== |
− |
| |
− | ===Conceptual Design Reports===
| |
− |
| |
− | JUNO Conceptual Design Report,
| |
− | https://arxiv.org/abs/1508.07166
| |
− |
| |
− | TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution,
| |
− | https://arxiv.org/abs/2005.08745
| |
− |
| |
− | ===Collaboration Papers (with publication information)===
| |
− |
| |
− | 1) Neutrino Physics with JUNO,
| |
− | J.Phys.G 43 (2016) 3, 030401
| |
− | https://doi.org/10.1088/0954-3899/43/3/030401
| |
− | https://arxiv.org/abs/1507.05613
| |
− |
| |
− | 2) JUNO Physics and Detector,
| |
− | Prog. Part. Nucl. Phys. 123, (2022) 103927
| |
− | https://doi.org/10.1016/j.ppnp.2021.103927
| |
− | https://arxiv.org/abs/2104.02565
| |
− |
| |
− | 3) Radioactivity control strategy for the JUNO detector,
| |
− | J. High Energy Phys. 11, (2021) 102
| |
− | https://doi.org/10.1007/JHEP11(2021)102
| |
− | https://arxiv.org/abs/2107.03669
| |
− |
| |
− | 4) Calibration strategy of the JUNO experiment,
| |
− | J. High Energy Phys. 03, (2021) 004
| |
− | https://doi.org/10.1007/JHEP03(2021)004
| |
− | https://arxiv.org/abs/2011.06405
| |
− |
| |
− | 5) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS,
| |
− | Eur. Phys. J. C 81, (2021) 973
| |
− | https://doi.org/10.1140/epjc/s10052-021-09544-4
| |
− | https://arxiv.org/abs/2103.16900
| |
− |
| |
− | 6) JUNO sensitivity to low energy atmospheric neutrino spectra,
| |
− | Eur. Phys. J. C 81, (2021) 887
| |
− | https://doi.org/10.1140/epjc/s10052-021-09565-z
| |
− | https://arxiv.org/abs/2103.09908
| |
− |
| |
− | 7) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO,
| |
− | Chin. Phys. C 45, (2021) 023004
| |
− | https://doi.org/10.1088/1674-1137/abd92a
| |
− | https://arxiv.org/abs/2006.11760
| |
− |
| |
− | 8) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector,
| |
− | Nucl. Instrum. Methods A 988, (2021) 164823
| |
− | https://doi.org/10.1016/j.nima.2020.164823
| |
− | https://arxiv.org/abs/2007.00314
| |
− |
| |
− | 9) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment,
| |
− | https://arxiv.org/abs/2112.14450, submitted to JHEP.
| |
− |
| |
− | 10) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO,
| |
− | https://arxiv.org/abs/2204.13249, submitted to CPC.
| |
− |
| |
− | 11) Mass Testing and Characterization of 20-inch PMTs for JUNO,
| |
− | https://arxiv.org/abs/2205.08629, submitted to EPJC.
| |
− |
| |
− | 12) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO,
| |
− | https://arxiv.org/abs/2205.08830, submitted to JCAP.
| |
− |
| |
− | ===Physics Papers (by memebers of JUNO collaboration)===
| |
− |
| |
− | ======Mass Ordering Proposal======
| |
− |
| |
− | (1) Determination of the neutrino mass hierarchy at an intermediate baseline,
| |
− | Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103,
| |
− | https://doi.org/10.1103/PhysRevD.78.111103
| |
− |
| |
− | (2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos,
| |
− | Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007
| |
− | https://doi.org/10.1103/PhysRevD.79.073007
| |
− |
| |
− | (3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos,
| |
− | Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan,
| |
− | Phys. Rev. D 88, (2013) 013008
| |
− | https://doi.org/10.1103/PhysRevD.88.013008
| |
− |
| |
− | ======Reactor Neutrinos======
| |
− |
| |
− | (1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?
| |
− | Yu-Feng Li, Yifang Wang, Zhi-zhong Xing,
| |
− | Chin.Phys.C 40 (2016) 9, 091001.
| |
− | https://doi.org/10.1088/1674-1137/40/9/091001
| |
− | https://arxiv.org/abs/1605.00900
| |
− |
| |
− | (2) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations,
| |
− | Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu,
| |
− | Phys.Lett.B 782 (2018) 578-588
| |
− | https://doi.org/10.1016/j.physletb.2018.05.079
| |
− | https://arxiv.org/abs/1802.04964
| |
− |
| |
− | (3) Synergies and prospects for early resolution of the neutrino mass ordering,
| |
− | Anatael Cabrera, et al.,
| |
− | Sci.Rep. 12 (2022) 1, 5393
| |
− | https://doi.org/10.1038/s41598-022-09111-1
| |
− | https://arxiv.org/abs/2008.11280
| |
− |
| |
− | (4) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments,
| |
− | Zhaokan Chen, et al.,
| |
− | Eur.Phys.J.C 80 (2020) 12, 1112.
| |
− | https://doi.org/10.1140/epjc/s10052-020-08664-7
| |
− | https://arxiv.org/abs/2004.11659
| |
− |
| |
− | (5) Why matter effects matter for JUNO,
| |
− | Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke,
| |
− | Phys.Lett.B 803 (2020) 135354.
| |
− | https://doi.org/10.1016/j.physletb.2020.135354
| |
− | https://arxiv.org/abs/1910.12900
| |
− |
| |
− | (6) A framework for testing leptonic unitarity by neutrino oscillation experiments,
| |
− | C.S. Fong, H. Minakata, H. Nunokawa,
| |
− | JHEP 2017 (2017) 114.
| |
− | https://doi.org/10.1007/JHEP02(2017)114
| |
− | https://arxiv.org/abs/1609.08623
| |
− |
| |
− | (7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors,
| |
− | Hongxin Wang et al.,
| |
− | Nucl.Phys.B 918 (2017) 245-256.
| |
− | https://doi.org/10.1016/j.nuclphysb.2017.03.002
| |
− | https://arxiv.org/abs/1602.04442
| |
− |
| |
− | ======Solar Neutrinos======
| |
− |
| |
− | (1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment,
| |
− | Lukas Bieger, et al.,
| |
− | https://arxiv.org/abs/2109.10782
| |
− |
| |
− | (2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors,
| |
− | Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu,
| |
− | Chin.Phys.Lett. 38 (2021) 11, 111401.
| |
− | https://doi.org/10.1088/0256-307X/38/11/111401
| |
− | https://arxiv.org/abs/2103.11771
| |
− |
| |
− | (3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos,
| |
− | S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov,
| |
− | Nucl.Phys.B 944 (2019) 114661.
| |
− | https://doi.org/10.1016/j.nuclphysb.2019.114661
| |
− | https://arxiv.org/abs/1905.05464
| |
− |
| |
− | ======Atmospheric Neutrinos======
| |
− |
| |
− | (1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions,
| |
− | Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou
| |
− | Phys.Rev.D 103 (2021) 5, 053001
| |
− | https://doi.org/10.1103/PhysRevD.103.053001
| |
− | https://arxiv.org/abs/2008.04633
| |
− |
| |
− | (2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements,
| |
− | Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen
| |
− | Phys.Rev.D 103 (2021) 5, 053002
| |
− | https://doi.org/10.1103/PhysRevD.103.053002
| |
− | https://arxiv.org/abs/2009.04085
| |
− |
| |
− | (3) Low energy neutrinos from stopped muons in the Earth,
| |
− | Wan-Lei Guo,
| |
− | Phys.Rev.D 99 (2019) 7, 073007.
| |
− | https://doi.org/10.1103/PhysRevD.99.073007
| |
− | https://arxiv.org/abs/1812.04378
| |
− |
| |
− | ======Supernova Neutrinos======
| |
− |
| |
− | (1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors,
| |
− | Jian Tang, TseChun Wang, Meng-Ru Wu
| |
− | JCAP 10 (2020) 038
| |
− | https://doi.org/10.1088/1475-7516/2020/10/038
| |
− | https://arxiv.org/abs/2005.09168
| |
− |
| |
− | (2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors,
| |
− | Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou
| |
− | JCAP 05 (2020) 049
| |
− | https://doi.org/10.1088/1475-7516/2020/05/049
| |
− | https://arxiv.org/abs/2003.03982
| |
− |
| |
− | (3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra,
| |
− | Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou
| |
− | Phys.Rev.D 99 (2019) 12, 123009
| |
− | https://doi.org/10.1103/PhysRevD.99.123009
| |
− | https://arxiv.org/abs/1903.04781
| |
− |
| |
− | (4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors,
| |
− | Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou
| |
− | Phys.Rev.D 97 (2018) 6, 063014
| |
− | https://doi.org/10.1103/PhysRevD.97.063014
| |
− | https://arxiv.org/abs/1712.06985
| |
− |
| |
− | (5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors,
| |
− | Jia-Shu Lu, Yu-Feng Li, and Shun Zhou
| |
− | Phys.Rev.D 94 (2016) 2, 023006
| |
− | https://doi.org/10.1103/PhysRevD.94.023006
| |
− | https://arxiv.org/abs/1605.07803
| |
− |
| |
− | (6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO,
| |
− | Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou
| |
− | JCAP 05 (2015) 044
| |
− | https://doi.org/10.1088/1475-7516/2015/05/044
| |
− | https://arxiv.org/abs/1412.7418
| |
− |
| |
− | (7) Testing MSW effect in Supernova Explosion with Neutrino event rates,
| |
− | Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin
| |
− | https://arxiv.org/abs/2001.08543
| |
− |
| |
− | ======Diffuse Supernova Neutrino Background======
| |
− |
| |
− | (1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO,
| |
− | Yu-Feng Li, Mark Vagins, Michael Wurm
| |
− | Universe 8 (2022) 3, 181
| |
− | https://doi.org/10.3390/universe8030181
| |
− | https://arxiv.org/abs/2201.12920
| |
− |
| |
− | ======Geo Neutrinos======
| |
− |
| |
− | (1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO,
| |
− | RuohanGao, et al,
| |
− | Phys.Earth Planet.Interiors 299 (2020) 106409.
| |
− | https://doi.org/10.1016/j.pepi.2019.106409
| |
− | https://arxiv.org/abs/1903.11871
| |
− |
| |
− | (2) Non-negligible oscillation effects in the crustal geoneutrino calculations,
| |
− | Xin Mao, Ran Han, and Yu-Feng Li,
| |
− | Phys.Rev.D 100 (2019) 11, 113009.
| |
− | https://doi.org/10.1103/PhysRevD.100.113009
| |
− | https://arxiv.org/abs/1911.12302
| |
− |
| |
− | (3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment
| |
− | M. Reguzzoni, et al,
| |
− | J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249.
| |
− | https://doi.org/10.1029/2018JB016681
| |
− | https://arxiv.org/abs/1901.01945
| |
− |
| |
− | (4) Potential of Geo-neutrino Measurements at JUNO,
| |
− | Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova,
| |
− | Chin.Phys.C 40 (2016) 3, 033003.
| |
− | https://doi.org/10.1088/1674-1137/40/3/033003
| |
− | https://arxiv.org/abs/1510.01523
| |
− |
| |
− | ======Dark Matter======
| |
− |
| |
− | (1) Constraining primordial black holes as dark matter at JUNO,
| |
− | Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang,
| |
− | Phys.Rev.D 103 (2021) 4, 043010.
| |
− | https://doi.org/10.1103/PhysRevD.103.043010
| |
− | https://arxiv.org/abs/2010.16053
| |
− |
| |
− | (2) Detecting electron neutrinos from solar dark matter annihilation by JUNO,
| |
− | Wan-Lei Guo,
| |
− | JCAP 01 (2016) 039.
| |
− | https://doi.org/10.1088/1475-7516/2016/01/039
| |
− | https://arxiv.org/abs/1511.04888
| |
− |
| |
− | ======Nucleon Decay======
| |
− |
| |
− | (1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code,
| |
− | Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan,
| |
− | Phys.Lett.B 831 (2022) 137183
| |
− | https://doi.org/10.1016/j.physletb.2022.137183
| |
− | https://arxiv.org/abs/2108.11376
| |
− |
| |
− | (2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun,
| |
− | Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang,
| |
− | JCAP, in press.
| |
− | https://arxiv.org/abs/2201.02386
| |
− |
| |
− | ======New Physics======
| |
− |
| |
− | (1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays,
| |
− | Jun Cao, et al,
| |
− | Chin.Phys.C 44 (2020) 3, 031001.
| |
− | https://doi.org/10.1088/1674-1137/44/3/031001
| |
− | https://arxiv.org/abs/1908.08355
| |
− |
| |
− | (2) Physics potential of searching for 0νββ decays in JUNO,
| |
− | Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao,
| |
− | Chin.Phys.C 41 (2017) 5, 053001.
| |
− | https://doi.org/10.1088/1674-1137/41/5/053001
| |
− | https://arxiv.org/abs/1610.07143
| |
− |
| |
− | (3) Exploring detection of nuclearites in a large liquid scintillator neutrino detector,
| |
− | Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang,
| |
− | Phys.Rev.D 95 (2017) 1, 015010.
| |
− | https://doi.org/10.1103/PhysRevD.95.015010
| |
− | https://arxiv.org/abs/1611.00166
| |
− |
| |
− | (4) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s),
| |
− | Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang,
| |
− | JHEAp 28 (2020) 1-9.
| |
− | https://doi.org/10.1016/j.jheap.2020.10.001
| |
− |
| |
− | (5) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector,
| |
− | Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang,
| |
− | Nucl.Phys.B 964 (2021) 115304.
| |
− | https://doi.org/10.1016/j.nuclphysb.2021.115304
| |
− | https://arxiv.org/abs/2009.06450
| |
− |
| |
− | (6) Constraining visible neutrino decay at KamLAND and JUNO,
| |
− | Yago P. Porto-Silva, et al.,
| |
− | Eur.Phys.J.C 80 (2020) 10, 999.
| |
− | https://doi.org/10.1140/epjc/s10052-020-08573-9
| |
− | https://arxiv.org/abs/2002.12134
| |
− |
| |
− | (7) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment,
| |
− | Yu-Feng Li, Zhen-hua Zhao,
| |
− | Phys.Rev.D 90 (2014) 11, 113014.
| |
− | https://doi.org/10.1103/PhysRevD.90.113014
| |
− | https://arxiv.org/abs/1409.6970
| |
− |
| |
− | (8) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions,
| |
− | Yu-Feng Li, Ye-Ling Zhou,
| |
− | Nucl.Phys.B 888 (2014) 137-153.
| |
− | https://doi.org/10.1016/j.nuclphysb.2014.09.013
| |
− | https://arxiv.org/abs/1408.6301
| |
− |
| |
− | ======Others======
| |
− |
| |
− | (1) Potential of octant degeneracy resolution in JUNO,
| |
− | M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling
| |
− | Chin.Phys.C 43 (2019) 3, 033001.
| |
− | https://doi.org/10.1088/1674-1137/43/3/033001
| |
− | https://arxiv.org/abs/1808.03795
| |
− |
| |
− | (2) The possibility of leptonic CP-violation measurement with JUNO,
| |
− | M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling,
| |
− | Nucl.Phys.B 931 (2018) 437-445.
| |
− | https://doi.org/10.1016/j.nuclphysb.2018.05.003
| |
− | https://arxiv.org/abs/1802.03677
| |
− |
| |
− | ===Technical Papers (by memebers of JUNO collaboration)===
| |
− |
| |
− | ======Central Detector======
| |
− |
| |
− | (1) The stress measurement system for the JUNO Central Detector acrylic panels,
| |
− | X. Yang, et al.,
| |
− | JINST 16 (2021) 12, P12040.
| |
− | https://doi.org/10.1088/1748-0221/16/12/P12040
| |
− |
| |
− | (2) Structure design and compression experiment of the supporting node for JUNO PMMA detector,
| |
− | Xiaohui Qian, et al.,
| |
− | Radiat Detect Technol Methods 4 (2020) 345-355.
| |
− | https://doi.org/10.1007/s41605-020-00190-0
| |
− |
| |
− | (3) A practical approach of high precision U and Th concentration measurement in acrylic,
| |
− | Chuanya Cao, et al.,
| |
− | Nucl.Instrum.Meth.A 1004 (2021) 165377.
| |
− | https://doi.org/10.1016/j.nima.2021.165377
| |
− | https://arxiv.org/abs/2011.06817
| |
− |
| |
− | (4) Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS,
| |
− | Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen,
| |
− | Nucl.Instrum.Meth.A 941 (2019) 162335.
| |
− | https://doi.org/10.1016/j.nima.2019.162335
| |
− | https://arxiv.org/abs/2003.12229
| |
− |
| |
− | (5) The measurement system of acrylic transmittance for the JUNO central detector,
| |
− | Xiaoyu Yang, et al.,
| |
− | Radiat Detect Technol Methods 4, 284–292 (2020).
| |
− | https://doi.org/10.1007/s41605-020-00182-0
| |
− |
| |
− | (6) FE Analysis on the Thermoforming Behaviour of Large Spherical PMMA Panelapplied in JUNO,
| |
− | Xiaohui Qian, et al.,
| |
− | IOP Conf. Ser.: Mater. Sci. Eng. 774 012148.
| |
− | https://doi.org/10.1088/1757-899x/774/1/012148
| |
− |
| |
− | (7) Thermal reliability analysis of the central detector of JUNO,
| |
− | Xiaoyu Yang, et al.,
| |
− | Radiat Detect Technol Methods 3, 64 (2019).
| |
− | https://doi.org/10.1007/s41605-019-0142-y
| |
− |
| |
− | (8) The design of the small prototype for the central detector of JUNO,
| |
− | Xiaoyu Yang, et al,
| |
− | Radiat Detect Technol Methods 2, 46 (2018).
| |
− | https://doi.org/10.1007/s41605-018-0073-z
| |
− |
| |
− | (9) 222Rn contamination mechanisms on acrylic surfaces,
| |
− | M. Nastasi, et al.,
| |
− | https://arxiv.org/abs/1911.04836
| |
− |
| |
− | ======Liquid Scintillator======
| |
− |
| |
− | (1) Measurements of Rayleigh Ratios in Linear Alkylbenzene,
| |
− | Miao Yu et al.,
| |
− | https://arxiv.org/abs/2203.03126
| |
− |
| |
− | (2) Exploring the intrinsic energy resolution of liquid scintillator to approximately 1 MeV electrons,
| |
− | Y. Deng, et al.,
| |
− | JINST 17 (2022) 04, P04018.
| |
− | https://doi.org/10.1088/1748-0221/17/04/P04018
| |
− | https://arxiv.org/abs/2203.05200
| |
− |
| |
− | (3) Development of water extraction system for liquid scintillator purification of JUNO
| |
− | Y. Deng, et al.,
| |
− | Nucl.Instrum.Meth.A 1027 (2022) 166251.
| |
− | https://doi.org/10.1016/j.nima.2021.166251
| |
− | https://arxiv.org/abs/2109.07317
| |
− |
| |
− | (4) The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay,
| |
− | Wenqi Yan, et al.,
| |
− | Nucl.Instrum.Meth.A 996 (2021) 165109.
| |
− | https://doi.org/10.1016/j.nima.2021.165109
| |
− | https://arxiv.org/abs/2011.05655
| |
− |
| |
− | (5) Radon activity measurement of JUNO nitrogen,
| |
− | X. Yu, et al.,
| |
− | JINST 15 (2020) 09, P09001.
| |
− | https://doi.org/10.1088/1748-0221/15/09/P09001
| |
− |
| |
− | (6) Thermal diffusivity and specific heat capacity of linear alkylbenzene
| |
− | Wenjie Wu, et al.,
| |
− | Phys.Scripta 94 (2019) 10, 105701.
| |
− | https://doi.org/10.1088/1402-4896/ab1cea
| |
− | https://arxiv.org/abs/1904.12147
| |
− |
| |
− | (7) Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO,
| |
− | Mario Schwarz, et al.,
| |
− | Nucl.Instrum.Meth.A 922 (2019) 64-70.
| |
− | https://doi.org/10.1016/j.nima.2018.12.068.
| |
− | https://arxiv.org/abs/1804.09456
| |
− |
| |
− | (8) Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment,
| |
− | Dewen Cao, et al.,
| |
− | Nucl.Instrum.Meth.A 927 (2019) 230-235.
| |
− | https://doi.org/10.1016/j.nima.2019.01.077
| |
− | https://arxiv.org/abs/1801.08363
| |
− |
| |
− | (9) Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene,
| |
− | Xiang Zhou, et al.,
| |
− | Phys. Scr. 90 (2015) 055701.
| |
− | https://doi.org/10.1088/0031-8949/90/5/055701
| |
− | https://arxiv.org/abs/1408.0877
| |
− |
| |
− | (10) Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors,
| |
− | Xiang Zhou, et al.,
| |
− | Rev. Sci. Instrum. 86 (2015) 073310.
| |
− | https://doi.org/10.1063/1.4927458
| |
− | https://arxiv.org/abs/1504.00987
| |
− |
| |
− | (11) Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors,
| |
− | Xiang Zhou, et al.,
| |
− | Eur. Phys. J. C 75 (2015) 545.
| |
− | https://doi.org/10.1140/epjc/s10052-015-3784-z
| |
− | https://arxiv.org/abs/1504.00986
| |
− |
| |
− | ======PMT Instrumentation======
| |
− |
| |
− | (1) A container-based facility for testing 20'000 20-inch PMTs for JUNO,
| |
− | B. Wonsak, et al.,
| |
− | JINST 16 (2021) 08, T08001.
| |
− | https://doi.org/10.1088/1748-0221/16/08/T08001
| |
− | https://arxiv.org/abs/2103.10193
| |
− |
| |
− | (2) Gain and charge response of 20” MCP and dynode PMTs
| |
− | H.Q. Zhang, et al.,
| |
− | JINST 16 (2021) 08, T08009.
| |
− | https://doi.org/10.1088/1748-0221/16/08/T08009
| |
− | https://arxiv.org/abs/2103.14822
| |
− |
| |
− | (3) A quantitative approach to select PMTs for large detectors,
| |
− | L.J. Wen, et al.,
| |
− | Nucl.Instrum.Meth.A 947 (2019) 162766.
| |
− | https://doi.org/10.1016/j.nima.2019.162766
| |
− | https://arxiv.org/abs/1903.12595
| |
− |
| |
− | (4) A study of the new hemispherical 9-inch PMT,
| |
− | F. Luo, et al.,
| |
− | JINST 14 (2019) 02, T02004.
| |
− | https://doi.org/10.1088/1748-0221/14/02/T02004
| |
− | https://arxiv.org/abs/1801.02737
| |
− |
| |
− | (5) Study on the large area MCP-PMT glass radioactivity reduction,
| |
− | Xuantong Zhang, et al.,
| |
− | Nucl.Instrum.Meth.A 898 (2018) 67-71.
| |
− | https://doi.org/10.1016/j.nima.2018.05.008
| |
− | https://arxiv.org/abs/1710.09965
| |
− |
| |
− | (6) Wide field-of-view and high-efficiency light concentrator,
| |
− | Yu Zhi, Ye Liang, Zhe Wang, Shaomin Chen,
| |
− | Nucl.Instrum.Meth.A 885 (2018) 114-118.
| |
− | https://doi.org/10.1016/j.nima.2017.12.003
| |
− | https://arxiv.org/abs/1703.07527
| |
− |
| |
− | ======Small PMTs======
| |
− |
| |
− | (1) CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes,
| |
− | S. Conforti, et al.,
| |
− | JINST 16 (2021) 05, P05010.
| |
− | https://doi.org/10.1088/1748-0221/16/05/P05010
| |
− | https://arxiv.org/abs/2012.01565
| |
− |
| |
− | (2) Characterization of 3-inch photomultiplier tubes for the JUNO central detector,
| |
− | Nan Li, et al.,
| |
− | Radiat Detect Technol Methods 3 (2019) 6.
| |
− | https://doi.org/10.1007/s41605-018-0085-8
| |
− |
| |
− | (3) Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO,
| |
− | Diru Wu, et al.,
| |
− | https://arxiv.org/abs/2204.02612
| |
− |
| |
− | ======Veto Detectors======
| |
− |
| |
− | (1) The study of active geomagnetic shielding coils system for JUNO,
| |
− | G. Zhang, et al.,
| |
− | JINST 16 (2021) 12, A12001.
| |
− | https://doi.org/10.1088/1748-0221/16/10/T10004
| |
− | https://arxiv.org/abs/2106.09998
| |
− |
| |
− | (2) Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory
| |
− | L.F. Xie, et al.,
| |
− | Nucl.Instrum.Meth.A 976 (2020) 164266.
| |
− | https://doi.org/10.1016/j.nima.2020.164266
| |
− | https://arxiv.org/abs/1906.06895
| |
− |
| |
− | (3) The development of 222Rn detectors for JUNO prototype,
| |
− | Y. P. Zhang,, et al.,
| |
− | Radiat Detect Technol Methods 2 (2018) 5.
| |
− | https://doi.org/10.1007/s41605-017-0029-8
| |
− | https://arxiv.org/abs/1710.03401
| |
− |
| |
− | (4) Discriminating cosmic muons and radioactivity using a liquid scintillator fiber detector,
| |
− | Y.P. Zhang, et al.,
| |
− | JINST 12 (2017) 03, P03015.
| |
− | https://doi.org/10.1088/1748-0221/12/03/P03015
| |
− | https://arxiv.org/abs/1608.08307
| |
− |
| |
− | ======Electronics and Trigger======
| |
− |
| |
− | (1) Embedded readout electronics R&D; for the large PMTs in the JUNO experiment,
| |
− | M.Bellatoa, et al.,
| |
− | Nucl.Instrum.Meth.A 985 (2021) 164600.
| |
− | https://doi.org/10.1016/j.nima.2020.164600
| |
− | https://arxiv.org/abs/2003.08339
| |
− |
| |
− | (2) A 4 GHz phase locked loop design in 65 nm CMOS for the Jiangmen Underground Neutrino Observatory detector,
| |
− | N. Parkalian, et al., JINST 13 (2018)02, P02010.
| |
− | https://doi.org/10.1088/1748-0221/13/02/p02010
| |
− |
| |
− | ======Calibration======
| |
− |
| |
− | (1) A Precise Method to Determine the Energy Scale and Resolution using Gamma Calibration Sources in a Liquid Scintillator Detector,
| |
− | Feiyang Zhang, et al.,
| |
− | JINST 16 (2021) T08007.
| |
− | https://doi.org/10.1088/1748-0221/16/08/T08007
| |
− | https://arxiv.org/abs/2106.06424
| |
− |
| |
− | (2) The automatic calibration unit in JUNO,
| |
− | Jiaqi Hui, et al.,
| |
− | JINST 16 (2021) 08, T08008.
| |
− | https://doi.org/10.1088/1748-0221/16/08/T08008
| |
− | https://arxiv.org/abs/2104.02579
| |
− |
| |
− | (3) Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO,
| |
− | Yuhang Guo, et al.,
| |
− | JINST 16 (2021) T07005.
| |
− | https://doi.org/10.1088/1748-0221/16/07/T07005
| |
− | https://arxiv.org/abs/2103.04602
| |
− |
| |
− | (4) Cable loop calibration system for Jiangmen Underground Neutrino Observatory,
| |
− | Yuanyuan Zhang, et al.,
| |
− | Nucl.Instrum.Meth.A 988 (2021) 164867.
| |
− | https://doi.org/10.1016/j.nima.2020.164867
| |
− | https://arxiv.org/abs/2011.02183
| |
− |
| |
− | (5) Design of the Guide Tube Calibration System for the JUNO experiment,
| |
− | Yuhang Guo, et al.,
| |
− | JINST 14 (2019) 09, T09005.
| |
− | https://doi.org/10.1088/1748-0221/14/09/T09005
| |
− | https://arxiv.org/abs/1905.02077
| |
− |
| |
− | (6) Ultrasonic positioning system for the calibration of central detector,
| |
− | Guo-Lei Zhu, et al.,
| |
− | Nucl.Sci.Tech. 30 (2019) 1, 5.
| |
− | https://doi.org/10.1007/s41365-018-0530-x
| |
− |
| |
− | ======TAO======
| |
− |
| |
− | (1) Calibration Strategy of the JUNO-TAO Experiment,
| |
− | Hangkun Xu, et al.,
| |
− | https://arxiv.org/abs/2204.03256
| |
− |
| |
− | (2) A liquid scintillator for a neutrino Detector working at -50 degree,
| |
− | Zhangquan Xie, et al.,
| |
− | Nucl.Instrum.Meth.A 1009 (2021) 165459.
| |
− | https://doi.org/10.1016/j.nima.2021.165459
| |
− | https://arxiv.org/abs/2012.11883
| |
− |
| |
− | (3) Study of Silicon Photomultiplier Performance at Different Temperatures,
| |
− | N.Anfimov, et al.,
| |
− | Nucl.Instrum.Meth.A 997 (2021) 165162.
| |
− | https://doi.org/10.1016/j.nima.2021.165162
| |
− | https://arxiv.org/abs/2005.10665
| |
− |
| |
− | (4) Reflectance of Silicon Photomultipliers in Linear Alkylbenzene,
| |
− | W. Wang, et al.,
| |
− | Nucl.Instrum.Meth.A 973 (2020) 164171.
| |
− | https://doi.org/10.1016/j.nima.2020.164171
| |
− | https://arxiv.org/abs/2002.04218
| |
− |
| |
− | (5) Evaluation of the KLauS ASIC at low temperature,
| |
− | Wei Wang, et al.,
| |
− | Nucl.Instrum.Meth.A 996 (2021) 165110.
| |
− | https://doi.org/10.1016/j.nima.2021.165110
| |
− | https://arxiv.org/abs/2011.05643
| |
− |
| |
− | ======Simulation and Software Framework======
| |
− |
| |
− | (1) A new optical model of a photomultiplier tube,
| |
− | Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang,
| |
− | Eur.Phys.J.C 82 (2022) 4, 329.
| |
− | https://doi.org/10.1140/epjc/s10052-022-10288-y
| |
− | https://arxiv.org/abs/2204.02703
| |
− |
| |
− | (2) Improving the Energy Resolution of the Reactor Antineutrino Energy Reconstruction with Positron Direction,
| |
− | Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang,
| |
− | RDTM, 4 (2020) 356–361.
| |
− | https://doi.org/10.1007/s41605-020-00191-z
| |
− | https://arxiv.org/abs/2005.05034
| |
− |
| |
− | (3) A complete optical model for liquid-scintillator detectors,
| |
− | Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen,
| |
− | Nucl.Instrum.Meth.A 967 (2020) 163860.
| |
− | https://doi.org/10.1016/j.nima.2020.163860
| |
− | https://arxiv.org/abs/2003.12212
| |
− |
| |
− | (4) A semi-analytical energy response model for low-energy events in JUNO,
| |
− | P. Kampmann, Y. Cheng, L. Ludhova,
| |
− | JINST 15 (2020) 10, P10007.
| |
− | https://doi.org/10.1088/1748-0221/15/10/P10007
| |
− | https://arxiv.org/abs/2006.03461
| |
− |
| |
− | (5) Capability of detecting low energy events in JUNO Central Detector,
| |
− | X. Fang, et al.,
| |
− | JINST 15 (2020) 03, P03020.
| |
− | https://doi.org/10.1088/1748-0221/15/03/P03020
| |
− | https://arxiv.org/abs/1912.01864
| |
− |
| |
− | (6) Fast Muon Simulation in the JUNO Central Detector,
| |
− | Tao Lin, et al.,
| |
− | Chin.Phys.C 40 (2016) 8, 086201.
| |
− | https://doi.org/10.1088/1674-1137/40/8/086201
| |
− | https://arxiv.org/abs/1602.00056
| |
− |
| |
− | (7) GDML based geometry management system for offline software in JUNO,
| |
− | Kaijie Li, et al.,
| |
− | Nucl.Instrum.Meth.A 908 (2018) 43-48.
| |
− | https://doi.org/10.1016/j.nima.2018.08.008
| |
− |
| |
− | (8) A ROOT Based Event Display Software for JUNO,
| |
− | Z. You, et al. JINST 13 (2018) 02, T02002.
| |
− | https://doi.org/10.1088/1748-0221/13/02/T02002
| |
− | https://arxiv.org/abs/1712.07603
| |
− |
| |
− | (9) Design and Development of JUNO Event Data Model,
| |
− | Teng Li, et al.,
| |
− | Chin.Phys.C 41 (2017) 6, 066201.
| |
− | https://doi.org/10.1088/1674-1137/41/6/066201
| |
− | https://arxiv.org/abs/1702.04100
| |
− |
| |
− | ======Reconstruction======
| |
− |
| |
− | (1) Improving the machine learning based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs,
| |
− | Zi-Yuan Li, et al.,
| |
− | https://arxiv.org/abs/2205.04039
| |
− |
| |
− | (2) Reconstruction of Muon Bundle in the JUNO Central Detector,
| |
− | Cheng-Feng Yang, et al.,
| |
− | https://arxiv.org/abs/2201.11321
| |
− |
| |
− | (3) Vertex and energy reconstruction in JUNO with machine learning methods,
| |
− | Zhen Qian, et al.,
| |
− | Nucl.Instrum.Meth.A 1010 (2021) 165527.
| |
− | https://doi.org/10.1016/j.nima.2021.165527
| |
− | https://arxiv.org/abs/2101.04839
| |
− |
| |
− | (4) Improving the energy uniformity for large liquid scintillator detectors,
| |
− | Guihong Huang, et al.,
| |
− | Nucl.Instrum.Meth.A 1001 (2021) 165287.
| |
− | https://doi.org/10.1016/j.nima.2021.165287
| |
− | https://arxiv.org/abs/2102.03736
| |
− |
| |
− | (5) Event vertex and time reconstruction in large-volume liquid scintillator detectors,
| |
− | Zi-Yuan Li, et al.,
| |
− | Nucl.Sci.Tech. 32 (2021) 5, 49.
| |
− | https://doi.org/10.1007/s41365-021-00885-z
| |
− | https://arxiv.org/abs/2101.08901
| |
− |
| |
− | (6) Particle Identification at MeV Energies in JUNO,
| |
− | H. Rebber, L. Ludhova, B. Wonsak and Y. Xu,
| |
− | JINST 16 (2021) 01, P01016.
| |
− | https://doi.org/10.1088/1748-0221/16/01/P01016
| |
− | https://arxiv.org/abs/2007.02687
| |
− |
| |
− | (7) Comparison on PMT Waveform Reconstructions with JUNO Prototype,
| |
− | H.Q. Zhang, et al.,
| |
− | JINST 14 (2019) 08, T08002.
| |
− | https://doi.org/10.1088/1748-0221/14/08/T08002
| |
− | https://arxiv.org/abs/1905.03648
| |
− |
| |
− | (8) A new method of energy reconstruction for large spherical liquid scintillator detectors,
| |
− | W. Wu, M. He, X. Zhou and H. Qiao,
| |
− | JINST 14 (2019) 03, P03009.
| |
− | https://doi.org/10.1088/1748-0221/14/03/P03009
| |
− | https://arxiv.org/abs/1812.01799
| |
− |
| |
− | (9) Muon Tracking with the fastest light in the JUNO Central Detector,
| |
− | Kun Zhang, Miao He, Weidong Li, Jilei Xu,
| |
− | Radiat Detect Technol Methods 2 (2018) 13.
| |
− | https://doi.org/10.1007/s41605-018-0040-8
| |
− | https://arxiv.org/abs/1803.10407
| |
− |
| |
− | (10) A vertex reconstruction algorithm in the central detector of JUNO,
| |
− | Q. Liu, et al.,
| |
− | JINST 13 (2018) 09, T09005.
| |
− | https://doi.org/10.1088/1748-0221/13/09/T09005
| |
− | https://arxiv.org/abs/1803.09394
| |
− |
| |
− | (11) Muon reconstruction with a geometrical model in JUNO
| |
− | C. Genster, et al.,
| |
− | JINST 13 (2018) 03, T03003.
| |
− | https://doi.org/10.1088/1748-0221/13/03/T03003
| |
− | https://arxiv.org/abs/1906.01912
| |
− |
| |
− | (12) Charge reconstruction in large-area photomultipliers,
| |
− | M. Grassi, et al.,
| |
− | JINST 13 (2018) 02, P02008.
| |
− | https://doi.org/10.1088/1748-0221/13/02/P02008
| |
− | https://arxiv.org/abs/1801.08690
| |