Difference between revisions of "Publication:JUNO publications"

From JUNOWiki
(Collaboration Papers)
m (Small PMTs)
 
(5 intermediate revisions by the same user not shown)
Line 517: Line 517:
 
======PMT Instrumentation======
 
======PMT Instrumentation======
  
(1) Design of the PMT underwater cascade implosion protection system for JUNO,
+
(1) Mass production and performance study on the 20-inch PMT acrylic protection covers in JUNO,
 +
M. He, et al.,
 +
JINST (2024) 19, T05003,
 +
https://doi.org/10.1088/1748-0221/19/05/T05003,
 +
https://arxiv.org/abs/2402.16272
 +
 
 +
(2) Design of the PMT underwater cascade implosion protection system for JUNO,
 
M. He, et al.,
 
M. He, et al.,
 
JINST 18 (2023) 02, P02013.
 
JINST 18 (2023) 02, P02013.
Line 523: Line 529:
 
https://arxiv.org/abs/2209.08441
 
https://arxiv.org/abs/2209.08441
  
(2) Database system for managing 20,000 20-inch PMTs at JUNO,
+
(3) Database system for managing 20,000 20-inch PMTs at JUNO,
 
J. Wang, et al.,
 
J. Wang, et al.,
 
Nucl.Sci.Tech. 33 (2022) 24.
 
Nucl.Sci.Tech. 33 (2022) 24.
 
https://doi.org/10.1007/s41365-022-01009-x
 
https://doi.org/10.1007/s41365-022-01009-x
  
(3) A container-based facility for testing 20'000 20-inch PMTs for JUNO,
+
(4) A container-based facility for testing 20'000 20-inch PMTs for JUNO,
 
B. Wonsak, et al.,
 
B. Wonsak, et al.,
 
JINST 16 (2021) 08, T08001.
 
JINST 16 (2021) 08, T08001.
Line 534: Line 540:
 
https://arxiv.org/abs/2103.10193
 
https://arxiv.org/abs/2103.10193
  
(4) Gain and charge response of 20” MCP and dynode PMTs,
+
(5) Gain and charge response of 20” MCP and dynode PMTs,
 
H.Q. Zhang, et al.,
 
H.Q. Zhang, et al.,
 
JINST 16 (2021) 08, T08009.
 
JINST 16 (2021) 08, T08009.
Line 540: Line 546:
 
https://arxiv.org/abs/2103.14822
 
https://arxiv.org/abs/2103.14822
  
(5) A quantitative approach to select PMTs for large detectors,
+
(6) A quantitative approach to select PMTs for large detectors,
 
L.J. Wen, et al.,
 
L.J. Wen, et al.,
 
Nucl.Instrum.Meth.A 947 (2019) 162766.
 
Nucl.Instrum.Meth.A 947 (2019) 162766.
Line 546: Line 552:
 
https://arxiv.org/abs/1903.12595
 
https://arxiv.org/abs/1903.12595
  
(6) Comparison on PMT Waveform Reconstructions with JUNO Prototype,
+
(7) Comparison on PMT Waveform Reconstructions with JUNO Prototype,
 
H.Q. Zhang, et al.,
 
H.Q. Zhang, et al.,
 
JINST 14 (2019) 08, T08002.
 
JINST 14 (2019) 08, T08002.
Line 552: Line 558:
 
https://arxiv.org/abs/1905.03648
 
https://arxiv.org/abs/1905.03648
  
(7) A study of the new hemispherical 9-inch PMT,
+
(8) A study of the new hemispherical 9-inch PMT,
 
F. Luo, et al.,
 
F. Luo, et al.,
 
JINST 14 (2019) 02, T02004.
 
JINST 14 (2019) 02, T02004.
Line 558: Line 564:
 
https://arxiv.org/abs/1801.02737
 
https://arxiv.org/abs/1801.02737
  
(8) Study on Relative Collection Efficiency of PMTs with Point Light,
+
(9) Study on Relative Collection Efficiency of PMTs with Point Light,
 
H.Q. Zhang, et al.,
 
H.Q. Zhang, et al.,
 
RDTM 3 (2019) 20.
 
RDTM 3 (2019) 20.
Line 564: Line 570:
 
https://arxiv.org/abs/1810.04550
 
https://arxiv.org/abs/1810.04550
  
(9) The study of linearity and detection efficiency for 20″ photomultiplier tube,
+
(11) The study of linearity and detection efficiency for 20″ photomultiplier tube,
 
A.B. Yang, et al.,
 
A.B. Yang, et al.,
 
RDTM 3 (2019) 11.
 
RDTM 3 (2019) 11.
 
https://doi.org/10.1007/s41605-018-0088-5
 
https://doi.org/10.1007/s41605-018-0088-5
  
(10) Signal Optimization with HV divider of MCP-PMT for JUNO,
+
(12) Signal Optimization with HV divider of MCP-PMT for JUNO,
 
F.J. Luo, et al.,
 
F.J. Luo, et al.,
 
Springer Proc.Phys. 213 (2018) 309-314.
 
Springer Proc.Phys. 213 (2018) 309-314.
Line 575: Line 581:
 
https://arxiv.org/abs/1803.03746
 
https://arxiv.org/abs/1803.03746
  
(11) Large photocathode 20-inch PMT testing methods for the JUNO experiment,
+
(13) Large photocathode 20-inch PMT testing methods for the JUNO experiment,
 
N. Anfimov, et al.,
 
N. Anfimov, et al.,
 
JINST 12 (2017) 06, C06017.
 
JINST 12 (2017) 06, C06017.
Line 581: Line 587:
 
https://arxiv.org/abs/1705.05012
 
https://arxiv.org/abs/1705.05012
  
(12) Study of TTS for a 20-inch dynode PMT,
+
(14) Study of TTS for a 20-inch dynode PMT,
 
D.H. Liao, et al.,
 
D.H. Liao, et al.,
 
Chin.Phys.C 41 (2017) 7, 076001.
 
Chin.Phys.C 41 (2017) 7, 076001.
 
https://doi.org/10.1088/1674-1137/41/7/076001
 
https://doi.org/10.1088/1674-1137/41/7/076001
  
(13) PMT overshoot study for the JUNO prototype detector,
+
(15) PMT overshoot study for the JUNO prototype detector,
 
F.J. Luo, et al.,
 
F.J. Luo, et al.,
 
Chin.Phys.C 40 (2016) 9, 096002.
 
Chin.Phys.C 40 (2016) 9, 096002.
Line 594: Line 600:
 
======Small PMTs======
 
======Small PMTs======
  
(1) Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO,
+
# Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO, Diru Wu, et al., Radiat Detect Technol Methods 6 (2022) 349, https://doi.org/10.1007/s41605-022-00324-6, https://arxiv.org/abs/2204.02612,
Diru Wu, et al.,
+
# Mass production and characterization of 3-inch PMTs for the JUNO experiment, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1005 (2021) 165347, https://doi.org/10.1016/j.nima.2021.165347, https://arxiv.org/abs/2102.11538
Radiat Detect Technol Methods 6 (2022) 349
+
# CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes, S. Conforti, et al., JINST 16 (2021) 05, P05010, https://doi.org/10.1088/1748-0221/16/05/P05010, https://arxiv.org/abs/2012.01565
https://doi.org/10.1007/s41605-022-00324-6
+
# Characterization of 3-inch photomultiplier tubes for the JUNO central detector, Nan Li, et al., Radiat Detect Technol Methods 3 (2019)6, https://doi.org/10.1007/s41605-018-0085-8
https://arxiv.org/abs/2204.02612
+
# Double Calorimetry System in JUNO, Miao He, et al., Radiat Detect Technol Methods (2017) 1:21, https://doi.org/10.1007/s41605-017-0022-2
 
 
(2) Mass production and characterization of 3-inch PMTs for the JUNO experiment,
 
Chuanya Cao, et al.,
 
Nucl.Instrum.Meth.A 1005 (2021) 165347.
 
https://doi.org/10.1016/j.nima.2021.165347
 
https://arxiv.org/abs/2102.11538
 
 
 
(3) CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes,
 
S. Conforti, et al.,
 
JINST 16 (2021) 05, P05010.
 
https://doi.org/10.1088/1748-0221/16/05/P05010
 
https://arxiv.org/abs/2012.01565
 
 
 
(4) Characterization of 3-inch photomultiplier tubes for the JUNO central detector,
 
Nan Li, et al.,
 
Radiat Detect Technol Methods 3 (2019) 6.
 
https://doi.org/10.1007/s41605-018-0085-8
 
  
 
======Veto Detectors======
 
======Veto Detectors======
Line 737: Line 726:
 
======Low Background======
 
======Low Background======
  
(1) A practical approach of high precision U and Th concentration measurement in acrylic,
+
# Environmental radon control in the 700 m underground laboratory at JUNO, Chenyang Cui, et al., Eur.Phys.J.C 84 (2024) 2, 120, https://doi.org/10.1140/epjc/s10052-024-12474-6, https://arxiv.org/abs/2309.06039
Chuanya Cao, et al.,
+
# A practical approach of high precision U and Th concentration measurement in acrylic, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1004 (2021) 165377, https://doi.org/10.1016/j.nima.2021.165377, https://arxiv.org/abs/2011.06817
Nucl.Instrum.Meth.A 1004 (2021) 165377.
+
# Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS, Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen, Nucl.Instrum.Meth.A 941 (2019) 162335, https://doi.org/10.1016/j.nima.2019.162335, https://arxiv.org/abs/2003.12229
https://doi.org/10.1016/j.nima.2021.165377
+
# 222Rn contamination mechanisms on acrylic surfaces, M. Nastasi, et al., https://arxiv.org/abs/1911.04836
https://arxiv.org/abs/2011.06817
+
# Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang, et al., Nucl.Instrum.Meth.A 898 (2018) 67-71, https://doi.org/10.1016/j.nima.2018.05.008, https://arxiv.org/abs/1710.09965
 
 
(2) Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS,
 
Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen,
 
Nucl.Instrum.Meth.A 941 (2019) 162335.
 
https://doi.org/10.1016/j.nima.2019.162335
 
https://arxiv.org/abs/2003.12229
 
 
 
(3) 222Rn contamination mechanisms on acrylic surfaces,
 
M. Nastasi, et al.,
 
https://arxiv.org/abs/1911.04836
 
 
 
(4) Study on the large area MCP-PMT glass radioactivity reduction,
 
Xuantong Zhang, et al.,
 
Nucl.Instrum.Meth.A 898 (2018) 67-71.
 
https://doi.org/10.1016/j.nima.2018.05.008
 
https://arxiv.org/abs/1710.09965
 
  
 
======Software Framework======
 
======Software Framework======

Latest revision as of 06:44, 1 July 2024

Conceptual Design Reports

JUNO Conceptual Design Report, https://arxiv.org/abs/1508.07166

TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, https://arxiv.org/abs/2005.08745

Collaboration Papers

2024

1) Real-time monitoring for the next core-collapse supernova in JUNO JCAP 01 (2024) 057, e-Print: 2309.07109 [hep-ex], https://doi.org/10.1088/1475-7516/2024/01/057

2) Model Independent Approach of the JUNO B8 Solar Neutrino Program, ApJ 965 (2024) 122, https://iopscience.iop.org/article/10.3847/1538-4357/ad2bfd https://arxiv.org/abs/2210.08437

3) Potential to Identify the Neutrino Mass Ordering with Reactor Antineutrinos in JUNO https://arxiv.org/abs/2405.18008

4) Prediction of Energy Resolution in the JUNO Experiment https://arxiv.org/abs/2405.17860

5) JUNO Sensitivity to Invisible Decay Modes of Neutrons https://arxiv.org/abs/2405.17792


2023

1) The Design and Technology Development of the JUNO Central Detector, https://arxiv.org/abs/2311.17314

2) JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo, JCAP 09 (2023) 001 • e-Print: 2306.09567 [hep-ex], https://iopscience.iop.org/article/10.1088/1475-7516/2023/09/001

3) The JUNO experiment Top Tracker, Nucl.Instrum.Meth.A 1057 (2023) 168680 • e-Print: 2303.05172 [hep-ex] https://doi.org/10.1016/j.nima.2023.168680

4) JUNO sensitivity to Be-7, pep, and CNO solar neutrinos, JCAP 10 (2023) 022 • e-Print: 2303.03910 [hep-ex] https://iopscience.iop.org/article/10.1088/1475-7516/2023/10/022

2022

1) JUNO Sensitivity on Proton Decay p\to \bar\nu K^+ Searches, Chin.Phys.C 47 (2023) 11, 113002 • e-Print: 2212.08502 [hep-ex] https://iopscience.iop.org/article/10.1088/1674-1137/ace9c6

2) Model Independent Approach of the JUNO B8 Solar Neutrino Program, https://arxiv.org/abs/2210.08437, Accepted for the publication in The Astrophysical Journal

3) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, Chin. Phys. C 46 (2022) 123001. https://iopscience.iop.org/article/10.1088/1674-1137/ac8bc9 https://arxiv.org/abs/2204.13249

4) Mass Testing and Characterization of 20-inch PMTs for JUNO, Eur. Phys. J. C 82 (2022) 1168. https://doi.org/10.1140/epjc/s10052-022-11002-8 https://arxiv.org/abs/2205.08629

5) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, JCAP 10 (2022) 033. https://doi.org/10.1088/1475-7516/2022/10/033 https://arxiv.org/abs/2205.08830

6) JUNO Physics and Detector, Prog. Part. Nucl. Phys. 123, (2022) 103927 https://doi.org/10.1016/j.ppnp.2021.103927 https://arxiv.org/abs/2104.02565

7) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, JHEP 06 (2022) 062. https://doi.org/10.1007/JHEP06(2022)062 https://arxiv.org/abs/2112.14450

2021

6) Radioactivity control strategy for the JUNO detector, J. High Energy Phys. 11, (2021) 102. https://doi.org/10.1007/JHEP11(2021)102 https://arxiv.org/abs/2107.03669

7) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS, Eur. Phys. J. C 81, (2021) 973 https://doi.org/10.1140/epjc/s10052-021-09544-4 https://arxiv.org/abs/2103.16900

8) JUNO sensitivity to low energy atmospheric neutrino spectra, Eur. Phys. J. C 81, (2021) 887 https://doi.org/10.1140/epjc/s10052-021-09565-z https://arxiv.org/abs/2103.09908

9) Calibration strategy of the JUNO experiment, J. High Energy Phys. 03, (2021) 004 https://doi.org/10.1007/JHEP03(2021)004 https://arxiv.org/abs/2011.06405

10) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO, Chin. Phys. C 45, (2021) 023004 https://doi.org/10.1088/1674-1137/abd92a https://arxiv.org/abs/2006.11760

11) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Methods A 988, (2021) 164823 https://doi.org/10.1016/j.nima.2020.164823 https://arxiv.org/abs/2007.00314

2016

12) Neutrino Physics with JUNO, J.Phys.G 43 (2016) 3, 030401 https://doi.org/10.1088/0954-3899/43/3/030401 https://arxiv.org/abs/1507.05613

Physics Papers (by memebers of JUNO collaboration)

Mass Ordering Proposal

(1) Determination of the neutrino mass hierarchy at an intermediate baseline, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103, https://doi.org/10.1103/PhysRevD.78.111103

(2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007 https://doi.org/10.1103/PhysRevD.79.073007

(3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos, Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, Phys. Rev. D 88, (2013) 013008 https://doi.org/10.1103/PhysRevD.88.013008

Reactor Neutrinos

(1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small? Yu-Feng Li, Yifang Wang, Zhi-zhong Xing, Chin.Phys.C 40 (2016) 9, 091001. https://doi.org/10.1088/1674-1137/40/9/091001 https://arxiv.org/abs/1605.00900

(2) Synergies and prospects for early resolution of the neutrino mass ordering, Anatael Cabrera, et al., Sci.Rep. 12 (2022) 1, 5393 https://doi.org/10.1038/s41598-022-09111-1 https://arxiv.org/abs/2008.11280

(3) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments, Zhaokan Chen, et al., Eur.Phys.J.C 80 (2020) 12, 1112. https://doi.org/10.1140/epjc/s10052-020-08664-7 https://arxiv.org/abs/2004.11659

(4) Why matter effects matter for JUNO, Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke, Phys.Lett.B 803 (2020) 135354. https://doi.org/10.1016/j.physletb.2020.135354 https://arxiv.org/abs/1910.12900

(5) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett.B 782 (2018) 578-588 https://doi.org/10.1016/j.physletb.2018.05.079 https://arxiv.org/abs/1802.04964

(6) A framework for testing leptonic unitarity by neutrino oscillation experiments, C.S. Fong, H. Minakata, H. Nunokawa, JHEP 2017 (2017) 114. https://doi.org/10.1007/JHEP02(2017)114 https://arxiv.org/abs/1609.08623

(7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors, Hongxin Wang, et al., Nucl.Phys.B 918 (2017) 245-256. https://doi.org/10.1016/j.nuclphysb.2017.03.002 https://arxiv.org/abs/1602.04442

(8) Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering, S. Aiello, et al., JHEP 03 (2022) 055. https://doi.org/10.1007/JHEP03(2022)055 https://arxiv.org/abs/2108.06293

(9) Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, M.G. Aartsen, et al., Phys.Rev.D 101 (2020) 3, 032006. https://doi.org/10.1103/PhysRevD.101.032006 https://arxiv.org/abs/1911.06745

Solar Neutrinos

(1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment, Lukas Bieger, et al., Eur.Phys.J.C 82 (2022) 9, 779. https://doi.org/10.1140/epjc/s10052-022-10725-y https://arxiv.org/abs/2109.10782

(2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors, Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu, Chin.Phys.Lett. 38 (2021) 11, 111401. https://doi.org/10.1088/0256-307X/38/11/111401 https://arxiv.org/abs/2103.11771

(3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos, S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov, Nucl.Phys.B 944 (2019) 114661. https://doi.org/10.1016/j.nuclphysb.2019.114661 https://arxiv.org/abs/1905.05464

Atmospheric Neutrinos

(1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions, Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou Phys.Rev.D 103 (2021) 5, 053001 https://doi.org/10.1103/PhysRevD.103.053001 https://arxiv.org/abs/2008.04633

(2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements, Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen Phys.Rev.D 103 (2021) 5, 053002 https://doi.org/10.1103/PhysRevD.103.053002 https://arxiv.org/abs/2009.04085

(3) Low energy neutrinos from stopped muons in the Earth, Wan-Lei Guo, Phys.Rev.D 99 (2019) 7, 073007. https://doi.org/10.1103/PhysRevD.99.073007 https://arxiv.org/abs/1812.04378

Supernova Neutrinos

(1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu JCAP 10 (2020) 038 https://doi.org/10.1088/1475-7516/2020/10/038 https://arxiv.org/abs/2005.09168

(2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou JCAP 05 (2020) 049 https://doi.org/10.1088/1475-7516/2020/05/049 https://arxiv.org/abs/2003.03982

(3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou Phys.Rev.D 99 (2019) 12, 123009 https://doi.org/10.1103/PhysRevD.99.123009 https://arxiv.org/abs/1903.04781

(4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou Phys.Rev.D 97 (2018) 6, 063014 https://doi.org/10.1103/PhysRevD.97.063014 https://arxiv.org/abs/1712.06985

(5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors, Jia-Shu Lu, Yu-Feng Li, and Shun Zhou Phys.Rev.D 94 (2016) 2, 023006 https://doi.org/10.1103/PhysRevD.94.023006 https://arxiv.org/abs/1605.07803

(6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou JCAP 05 (2015) 044 https://doi.org/10.1088/1475-7516/2015/05/044 https://arxiv.org/abs/1412.7418

(7) Testing MSW effect in Supernova Explosion with Neutrino event rates, Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin https://arxiv.org/abs/2001.08543

Diffuse Supernova Neutrino Background

(1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO, Yu-Feng Li, Mark Vagins, Michael Wurm Universe 8 (2022) 3, 181 https://doi.org/10.3390/universe8030181 https://arxiv.org/abs/2201.12920

Geo Neutrinos

(1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO, RuohanGao, et al, Phys.Earth Planet.Interiors 299 (2020) 106409. https://doi.org/10.1016/j.pepi.2019.106409 https://arxiv.org/abs/1903.11871

(2) Non-negligible oscillation effects in the crustal geoneutrino calculations, Xin Mao, Ran Han, and Yu-Feng Li, Phys.Rev.D 100 (2019) 11, 113009. https://doi.org/10.1103/PhysRevD.100.113009 https://arxiv.org/abs/1911.12302

(3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment M. Reguzzoni, et al, J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249. https://doi.org/10.1029/2018JB016681 https://arxiv.org/abs/1901.01945

(4) Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova, Chin.Phys.C 40 (2016) 3, 033003. https://doi.org/10.1088/1674-1137/40/3/033003 https://arxiv.org/abs/1510.01523

Dark Matter

(1) Constraining primordial black holes as dark matter at JUNO, Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang, Phys.Rev.D 103 (2021) 4, 043010. https://doi.org/10.1103/PhysRevD.103.043010 https://arxiv.org/abs/2010.16053

(2) Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 01 (2016) 039. https://doi.org/10.1088/1475-7516/2016/01/039 https://arxiv.org/abs/1511.04888

Nucleon Decay

(1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code, Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan, Phys.Lett.B 831 (2022) 137183 https://doi.org/10.1016/j.physletb.2022.137183 https://arxiv.org/abs/2108.11376

(2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun, Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang, JCAP, in press. https://arxiv.org/abs/2201.02386

New Physics

(1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays, Jun Cao, et al, Chin.Phys.C 44 (2020) 3, 031001. https://doi.org/10.1088/1674-1137/44/3/031001 https://arxiv.org/abs/1908.08355

(2) Physics potential of searching for 0νββ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys.C 41 (2017) 5, 053001. https://doi.org/10.1088/1674-1137/41/5/053001 https://arxiv.org/abs/1610.07143

(3) Light dark bosons in the JUNO-TAO neutrino detector, M. Smirnov, et al., Phys.Rev.D 104 (2021) 11, 116024. https://doi.org/10.1103/PhysRevD.104.116024 https://arxiv.org/abs/2109.04276

(4) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector, Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, Nucl.Phys.B 964 (2021) 115304. https://doi.org/10.1016/j.nuclphysb.2021.115304 https://arxiv.org/abs/2009.06450

(5) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s), Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang, JHEAp 28 (2020) 1-9. https://doi.org/10.1016/j.jheap.2020.10.001

(6) Constraining visible neutrino decay at KamLAND and JUNO, Yago P. Porto-Silva, et al., Eur.Phys.J.C 80 (2020) 10, 999. https://doi.org/10.1140/epjc/s10052-020-08573-9 https://arxiv.org/abs/2002.12134

(7) Exploring detection of nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys.Rev.D 95 (2017) 1, 015010. https://doi.org/10.1103/PhysRevD.95.015010 https://arxiv.org/abs/1611.00166

(8) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment, Yu-Feng Li, Zhen-hua Zhao, Phys.Rev.D 90 (2014) 11, 113014. https://doi.org/10.1103/PhysRevD.90.113014 https://arxiv.org/abs/1409.6970

(9) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions, Yu-Feng Li, Ye-Ling Zhou, Nucl.Phys.B 888 (2014) 137-153. https://doi.org/10.1016/j.nuclphysb.2014.09.013 https://arxiv.org/abs/1408.6301

Others

(1) Potential of octant degeneracy resolution in JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling Chin.Phys.C 43 (2019) 3, 033001. https://doi.org/10.1088/1674-1137/43/3/033001 https://arxiv.org/abs/1808.03795

(2) The possibility of leptonic CP-violation measurement with JUNO, M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling, Nucl.Phys.B 931 (2018) 437-445. https://doi.org/10.1016/j.nuclphysb.2018.05.003 https://arxiv.org/abs/1802.03677

Technical Papers (by memebers of JUNO collaboration)

Central Detector

(1) Laser measurement system for acrylic transmittance of JUNO central detector, Zhaohan Li, et al., Rad.Det.Tech.Meth. 5 (2021) 3, 356-363

(2) The stress measurement system for the JUNO Central Detector acrylic panels, X. Yang, et al., JINST 16 (2021) 12, P12040. https://doi.org/10.1088/1748-0221/16/12/P12040

(3) Structure design and compression experiment of the supporting node for JUNO PMMA detector, Xiaohui Qian, et al., Radiat Detect Technol Methods 4 (2020) 345-355. https://doi.org/10.1007/s41605-020-00190-0

(4) The measurement system of acrylic transmittance for the JUNO central detector, Xiaoyu Yang, et al., Radiat Detect Technol Methods 4, 284–292 (2020). https://doi.org/10.1007/s41605-020-00182-0

(5) FE Analysis on the Thermoforming Behaviour of Large Spherical PMMA Panelapplied in JUNO, Xiaohui Qian, et al., IOP Conf. Ser.: Mater. Sci. Eng. 774 012148. https://doi.org/10.1088/1757-899x/774/1/012148

(6) Thermal reliability analysis of the central detector of JUNO, Xiaoyu Yang, et al., Radiat Detect Technol Methods 3, 64 (2019). https://doi.org/10.1007/s41605-019-0142-y

(7) The design of the small prototype for the central detector of JUNO, Xiaoyu Yang, et al, Radiat Detect Technol Methods 2, 46 (2018). https://doi.org/10.1007/s41605-018-0073-z

Liquid Scintillator

(1) Measurements of Rayleigh Ratios in Linear Alkylbenzene, Miao Yu et al., Rev.Sci.Inst. 93 (2022) 063106. https://doi.org/10.1063/5.0091847 https://arxiv.org/abs/2203.03126

(2) Exploring the intrinsic energy resolution of liquid scintillator to approximately 1 MeV electrons, Y. Deng, et al., JINST 17 (2022) 04, P04018. https://doi.org/10.1088/1748-0221/17/04/P04018 https://arxiv.org/abs/2203.05200

(3) Development of water extraction system for liquid scintillator purification of JUNO Y. Deng, et al., Nucl.Instrum.Meth.A 1027 (2022) 166251. https://doi.org/10.1016/j.nima.2021.166251 https://arxiv.org/abs/2109.07317

(4) The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay, Wenqi Yan, et al., Nucl.Instrum.Meth.A 996 (2021) 165109. https://doi.org/10.1016/j.nima.2021.165109 https://arxiv.org/abs/2011.05655

(5) Radon activity measurement of JUNO nitrogen, X. Yu, et al., JINST 15 (2020) 09, P09001. https://doi.org/10.1088/1748-0221/15/09/P09001

(6) Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability, P. Lombardi, et al., Nucl.Instrum.Meth.A 925 (2019) 6-17. https://doi.org/10.1016/j.nima.2019.01.071 https://arxiv.org/abs/1902.05288

(7) Thermal diffusivity and specific heat capacity of linear alkylbenzene Wenjie Wu, et al., Phys.Scripta 94 (2019) 10, 105701. https://doi.org/10.1088/1402-4896/ab1cea https://arxiv.org/abs/1904.12147

(8) Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO, Mario Schwarz, et al., Nucl.Instrum.Meth.A 922 (2019) 64-70. https://doi.org/10.1016/j.nima.2018.12.068. https://arxiv.org/abs/1804.09456

(9) Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment, Dewen Cao, et al., Nucl.Instrum.Meth.A 927 (2019) 230-235. https://doi.org/10.1016/j.nima.2019.01.077 https://arxiv.org/abs/1801.08363

(10) Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene, Xiang Zhou, et al., Phys. Scr. 90 (2015) 055701. https://doi.org/10.1088/0031-8949/90/5/055701 https://arxiv.org/abs/1408.0877

(11) Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors, Xiang Zhou, et al., Rev. Sci. Instrum. 86 (2015) 073310. https://doi.org/10.1063/1.4927458 https://arxiv.org/abs/1504.00987

(12) Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors, Xiang Zhou, et al., Eur. Phys. J. C 75 (2015) 545. https://doi.org/10.1140/epjc/s10052-015-3784-z https://arxiv.org/abs/1504.00986

PMT Instrumentation

(1) Mass production and performance study on the 20-inch PMT acrylic protection covers in JUNO, M. He, et al., JINST (2024) 19, T05003, https://doi.org/10.1088/1748-0221/19/05/T05003, https://arxiv.org/abs/2402.16272

(2) Design of the PMT underwater cascade implosion protection system for JUNO, M. He, et al., JINST 18 (2023) 02, P02013. https://doi.org/10.1088/1748-0221/18/02/P02013 https://arxiv.org/abs/2209.08441

(3) Database system for managing 20,000 20-inch PMTs at JUNO, J. Wang, et al., Nucl.Sci.Tech. 33 (2022) 24. https://doi.org/10.1007/s41365-022-01009-x

(4) A container-based facility for testing 20'000 20-inch PMTs for JUNO, B. Wonsak, et al., JINST 16 (2021) 08, T08001. https://doi.org/10.1088/1748-0221/16/08/T08001 https://arxiv.org/abs/2103.10193

(5) Gain and charge response of 20” MCP and dynode PMTs, H.Q. Zhang, et al., JINST 16 (2021) 08, T08009. https://doi.org/10.1088/1748-0221/16/08/T08009 https://arxiv.org/abs/2103.14822

(6) A quantitative approach to select PMTs for large detectors, L.J. Wen, et al., Nucl.Instrum.Meth.A 947 (2019) 162766. https://doi.org/10.1016/j.nima.2019.162766 https://arxiv.org/abs/1903.12595

(7) Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang, et al., JINST 14 (2019) 08, T08002. https://doi.org/10.1088/1748-0221/14/08/T08002 https://arxiv.org/abs/1905.03648

(8) A study of the new hemispherical 9-inch PMT, F. Luo, et al., JINST 14 (2019) 02, T02004. https://doi.org/10.1088/1748-0221/14/02/T02004 https://arxiv.org/abs/1801.02737

(9) Study on Relative Collection Efficiency of PMTs with Point Light, H.Q. Zhang, et al., RDTM 3 (2019) 20. https://doi.org/10.1007/s41605-019-0099-x https://arxiv.org/abs/1810.04550

(11) The study of linearity and detection efficiency for 20″ photomultiplier tube, A.B. Yang, et al., RDTM 3 (2019) 11. https://doi.org/10.1007/s41605-018-0088-5

(12) Signal Optimization with HV divider of MCP-PMT for JUNO, F.J. Luo, et al., Springer Proc.Phys. 213 (2018) 309-314. https://doi.org/10.1007/978-981-13-1316-5_58 https://arxiv.org/abs/1803.03746

(13) Large photocathode 20-inch PMT testing methods for the JUNO experiment, N. Anfimov, et al., JINST 12 (2017) 06, C06017. https://doi.org/10.1088/1748-0221/12/06/C06017 https://arxiv.org/abs/1705.05012

(14) Study of TTS for a 20-inch dynode PMT, D.H. Liao, et al., Chin.Phys.C 41 (2017) 7, 076001. https://doi.org/10.1088/1674-1137/41/7/076001

(15) PMT overshoot study for the JUNO prototype detector, F.J. Luo, et al., Chin.Phys.C 40 (2016) 9, 096002. https://doi.org/10.1088/1674-1137/40/9/096002 https://arxiv.org/abs/1602.06080

Small PMTs
  1. Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO, Diru Wu, et al., Radiat Detect Technol Methods 6 (2022) 349, https://doi.org/10.1007/s41605-022-00324-6, https://arxiv.org/abs/2204.02612,
  2. Mass production and characterization of 3-inch PMTs for the JUNO experiment, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1005 (2021) 165347, https://doi.org/10.1016/j.nima.2021.165347, https://arxiv.org/abs/2102.11538
  3. CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes, S. Conforti, et al., JINST 16 (2021) 05, P05010, https://doi.org/10.1088/1748-0221/16/05/P05010, https://arxiv.org/abs/2012.01565
  4. Characterization of 3-inch photomultiplier tubes for the JUNO central detector, Nan Li, et al., Radiat Detect Technol Methods 3 (2019)6, https://doi.org/10.1007/s41605-018-0085-8
  5. Double Calorimetry System in JUNO, Miao He, et al., Radiat Detect Technol Methods (2017) 1:21, https://doi.org/10.1007/s41605-017-0022-2
Veto Detectors

(1) The study of active geomagnetic shielding coils system for JUNO, G. Zhang, et al., JINST 16 (2021) 12, A12001. https://doi.org/10.1088/1748-0221/16/10/T10004 https://arxiv.org/abs/2106.09998

(2) Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory, L.F. Xie, et al., Nucl.Instrum.Meth.A 976 (2020) 164266. https://doi.org/10.1016/j.nima.2020.164266 https://arxiv.org/abs/1906.06895

(3) Study on the radon removal for the water system of Jiangmen Underground Neutrino Observatory, C. Guo, et al., Radiat Detect Technol Methods 2 (2018) 48. https://doi.org/10.1007/s41605-018-0077-8

(4) The development of 222Rn detectors for JUNO prototype, Y. P. Zhang,, et al., Radiat Detect Technol Methods 2 (2018) 5. https://doi.org/10.1007/s41605-017-0029-8 https://arxiv.org/abs/1710.03401

(5) Discriminating cosmic muons and radioactivity using a liquid scintillator fiber detector, Y.P. Zhang, et al., JINST 12 (2017) 03, P03015. https://doi.org/10.1088/1748-0221/12/03/P03015 https://arxiv.org/abs/1608.08307

Electronics and Trigger

(1) Embedded readout electronics R&D; for the large PMTs in the JUNO experiment, M.Bellatoa, et al., Nucl.Instrum.Meth.A 985 (2021) 164600. https://doi.org/10.1016/j.nima.2020.164600 https://arxiv.org/abs/2003.08339

(2) A 4 GHz phase locked loop design in 65 nm CMOS for the Jiangmen Underground Neutrino Observatory detector, N. Parkalian, et al., JINST 13 (2018)02, P02010. https://doi.org/10.1088/1748-0221/13/02/p02010

Calibration

(1) A Precise Method to Determine the Energy Scale and Resolution using Gamma Calibration Sources in a Liquid Scintillator Detector, Feiyang Zhang, et al., JINST 16 (2021) T08007. https://doi.org/10.1088/1748-0221/16/08/T08007 https://arxiv.org/abs/2106.06424

(2) The automatic calibration unit in JUNO, Jiaqi Hui, et al., JINST 16 (2021) 08, T08008. https://doi.org/10.1088/1748-0221/16/08/T08008 https://arxiv.org/abs/2104.02579

(3) Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO, Yuhang Guo, et al., JINST 16 (2021) T07005. https://doi.org/10.1088/1748-0221/16/07/T07005 https://arxiv.org/abs/2103.04602

(4) Cable loop calibration system for Jiangmen Underground Neutrino Observatory, Yuanyuan Zhang, et al., Nucl.Instrum.Meth.A 988 (2021) 164867. https://doi.org/10.1016/j.nima.2020.164867 https://arxiv.org/abs/2011.02183

(5) Design of the Guide Tube Calibration System for the JUNO experiment, Yuhang Guo, et al., JINST 14 (2019) 09, T09005. https://doi.org/10.1088/1748-0221/14/09/T09005 https://arxiv.org/abs/1905.02077

(6) Ultrasonic positioning system for the calibration of central detector, Guo-Lei Zhu, et al., Nucl.Sci.Tech. 30 (2019) 1, 5. https://doi.org/10.1007/s41365-018-0530-x

TAO

(1) Detector optimization to reduce the cosmogenic neutron backgrounds in the TAO experiment, Ruhui Li, et al., JINST 17 (2022) 09, P09024. https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09024 https://arxiv.org/abs/2206.01112

(2) Calibration Strategy of the JUNO-TAO Experiment, Hangkun Xu, et al., Eur.Phys.J.C 82 (2022) 1112. https://link.springer.com/article/10.1140/epjc/s10052-022-11069-3 https://arxiv.org/abs/2204.03256

(3) A liquid scintillator for a neutrino Detector working at -50 degree, Zhangquan Xie, et al., Nucl.Instrum.Meth.A 1009 (2021) 165459. https://doi.org/10.1016/j.nima.2021.165459 https://arxiv.org/abs/2012.11883

(4) Study of Silicon Photomultiplier Performance at Different Temperatures, N.Anfimov, et al., Nucl.Instrum.Meth.A 997 (2021) 165162. https://doi.org/10.1016/j.nima.2021.165162 https://arxiv.org/abs/2005.10665

(5) Reflectance of Silicon Photomultipliers in Linear Alkylbenzene, W. Wang, et al., Nucl.Instrum.Meth.A 973 (2020) 164171. https://doi.org/10.1016/j.nima.2020.164171 https://arxiv.org/abs/2002.04218

(6) Evaluation of the KLauS ASIC at low temperature, Wei Wang, et al., Nucl.Instrum.Meth.A 996 (2021) 165110. https://doi.org/10.1016/j.nima.2021.165110 https://arxiv.org/abs/2011.05643

Low Background
  1. Environmental radon control in the 700 m underground laboratory at JUNO, Chenyang Cui, et al., Eur.Phys.J.C 84 (2024) 2, 120, https://doi.org/10.1140/epjc/s10052-024-12474-6, https://arxiv.org/abs/2309.06039
  2. A practical approach of high precision U and Th concentration measurement in acrylic, Chuanya Cao, et al., Nucl.Instrum.Meth.A 1004 (2021) 165377, https://doi.org/10.1016/j.nima.2021.165377, https://arxiv.org/abs/2011.06817
  3. Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS, Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen, Nucl.Instrum.Meth.A 941 (2019) 162335, https://doi.org/10.1016/j.nima.2019.162335, https://arxiv.org/abs/2003.12229
  4. 222Rn contamination mechanisms on acrylic surfaces, M. Nastasi, et al., https://arxiv.org/abs/1911.04836
  5. Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang, et al., Nucl.Instrum.Meth.A 898 (2018) 67-71, https://doi.org/10.1016/j.nima.2018.05.008, https://arxiv.org/abs/1710.09965
Software Framework

(1) GDML based geometry management system for offline software in JUNO, Kaijie Li, et al., Nucl.Instrum.Meth.A 908 (2018) 43-48. https://doi.org/10.1016/j.nima.2018.08.008

(2) A ROOT Based Event Display Software for JUNO, Z. You, et al. JINST 13 (2018) 02, T02002. https://doi.org/10.1088/1748-0221/13/02/T02002 https://arxiv.org/abs/1712.07603

(3) Design and Development of JUNO Event Data Model, Teng Li, et al., Chin.Phys.C 41 (2017) 6, 066201. https://doi.org/10.1088/1674-1137/41/6/066201 https://arxiv.org/abs/1702.04100

Simulation

(1) Simulation software of the JUNO experiment, Tao Lin, Yuxiang Hu,et al., Eur. Phys. J. C 83 (2023) 382. https://doi.org/10.1140/epjc/s10052-023-11514-x

(2) A new optical model of a photomultiplier tube, Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang, Eur.Phys.J.C 82 (2022) 4, 329. https://doi.org/10.1140/epjc/s10052-022-10288-y https://arxiv.org/abs/2204.02703

(3) Improving the Energy Resolution of the Reactor Antineutrino Energy Reconstruction with Positron Direction, Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang, RDTM, 4 (2020) 356–361. https://doi.org/10.1007/s41605-020-00191-z https://arxiv.org/abs/2005.05034

(4) A complete optical model for liquid-scintillator detectors, Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen, Nucl.Instrum.Meth.A 967 (2020) 163860. https://doi.org/10.1016/j.nima.2020.163860 https://arxiv.org/abs/2003.12212

(5) A semi-analytical energy response model for low-energy events in JUNO, P. Kampmann, Y. Cheng, L. Ludhova, JINST 15 (2020) 10, P10007. https://doi.org/10.1088/1748-0221/15/10/P10007 https://arxiv.org/abs/2006.03461

(6) Capability of detecting low energy events in JUNO Central Detector, X. Fang, et al., JINST 15 (2020) 03, P03020. https://doi.org/10.1088/1748-0221/15/03/P03020 https://arxiv.org/abs/1912.01864

(7) Fast Muon Simulation in the JUNO Central Detector, Tao Lin, et al., Chin.Phys.C 40 (2016) 8, 086201. https://doi.org/10.1088/1674-1137/40/8/086201 https://arxiv.org/abs/1602.00056

Reconstruction

(1) Improving the machine learning based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs, Zi-Yuan Li, et al., https://arxiv.org/abs/2205.04039

(2) Reconstruction of Muon Bundle in the JUNO Central Detector, Cheng-Feng Yang, et al., https://arxiv.org/abs/2201.11321

(3) Muon reconstruction with a convolutional neural network in the JUNO detector, Yan Liu, et al., Rad.Det.Tech.Meth. 5 (2021) 3, 364-372. https://doi.org/10.1007/s41605-021-00259-4 https://arxiv.org/abs/2103.11939

(4) Vertex and energy reconstruction in JUNO with machine learning methods, Zhen Qian, et al., Nucl.Instrum.Meth.A 1010 (2021) 165527. https://doi.org/10.1016/j.nima.2021.165527 https://arxiv.org/abs/2101.04839

(5) Improving the energy uniformity for large liquid scintillator detectors, Guihong Huang, et al., Nucl.Instrum.Meth.A 1001 (2021) 165287. https://doi.org/10.1016/j.nima.2021.165287 https://arxiv.org/abs/2102.03736

(6) Event vertex and time reconstruction in large-volume liquid scintillator detectors, Zi-Yuan Li, et al., Nucl.Sci.Tech. 32 (2021) 5, 49. https://doi.org/10.1007/s41365-021-00885-z https://arxiv.org/abs/2101.08901

(7) Particle Identification at MeV Energies in JUNO, H. Rebber, L. Ludhova, B. Wonsak and Y. Xu, JINST 16 (2021) 01, P01016. https://doi.org/10.1088/1748-0221/16/01/P01016 https://arxiv.org/abs/2007.02687

(8) Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang, et al., JINST 14 (2019) 08, T08002. https://doi.org/10.1088/1748-0221/14/08/T08002 https://arxiv.org/abs/1905.03648

(9) A new method of energy reconstruction for large spherical liquid scintillator detectors, W. Wu, M. He, X. Zhou and H. Qiao, JINST 14 (2019) 03, P03009. https://doi.org/10.1088/1748-0221/14/03/P03009 https://arxiv.org/abs/1812.01799

(10) Muon Tracking with the fastest light in the JUNO Central Detector, Kun Zhang, Miao He, Weidong Li, Jilei Xu, Radiat Detect Technol Methods 2 (2018) 13. https://doi.org/10.1007/s41605-018-0040-8 https://arxiv.org/abs/1803.10407

(11) A vertex reconstruction algorithm in the central detector of JUNO, Q. Liu, et al., JINST 13 (2018) 09, T09005. https://doi.org/10.1088/1748-0221/13/09/T09005 https://arxiv.org/abs/1803.09394

(12) Muon reconstruction with a geometrical model in JUNO C. Genster, et al., JINST 13 (2018) 03, T03003. https://doi.org/10.1088/1748-0221/13/03/T03003 https://arxiv.org/abs/1906.01912

(13) Charge reconstruction in large-area photomultipliers, M. Grassi, et al., JINST 13 (2018) 02, P02008. https://doi.org/10.1088/1748-0221/13/02/P02008 https://arxiv.org/abs/1801.08690