Difference between revisions of "Main Page"

From JUNOWiki
m (JUNO publications)
m
 
(One intermediate revision by the same user not shown)
Line 29: Line 29:
 
Any problems please mail to: maqm@ihep.ac.cn
 
Any problems please mail to: maqm@ihep.ac.cn
  
==== JUNO publications ====
+
==== [[JUNO publications]] ====
 
 
===Conceptual Design Reports===
 
 
 
JUNO Conceptual Design Report,
 
https://arxiv.org/abs/1508.07166
 
 
 
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution,
 
https://arxiv.org/abs/2005.08745
 
 
 
===Collaboration Papers (with publication information)===
 
 
 
1) Neutrino Physics with JUNO,
 
J.Phys.G 43 (2016) 3, 030401
 
https://doi.org/10.1088/0954-3899/43/3/030401
 
https://arxiv.org/abs/1507.05613
 
 
 
2) JUNO Physics and Detector,
 
Prog. Part. Nucl. Phys. 123, (2022) 103927
 
https://doi.org/10.1016/j.ppnp.2021.103927
 
https://arxiv.org/abs/2104.02565
 
 
 
3) Radioactivity control strategy for the JUNO detector,
 
J. High Energy Phys. 11, (2021) 102
 
https://doi.org/10.1007/JHEP11(2021)102
 
https://arxiv.org/abs/2107.03669
 
 
 
4) Calibration strategy of the JUNO experiment,
 
J. High Energy Phys. 03, (2021) 004
 
https://doi.org/10.1007/JHEP03(2021)004
 
https://arxiv.org/abs/2011.06405
 
 
 
5) The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS,
 
Eur. Phys. J. C 81, (2021) 973
 
https://doi.org/10.1140/epjc/s10052-021-09544-4
 
https://arxiv.org/abs/2103.16900
 
 
 
6) JUNO sensitivity to low energy atmospheric neutrino spectra,
 
Eur. Phys. J. C 81, (2021) 887
 
https://doi.org/10.1140/epjc/s10052-021-09565-z
 
https://arxiv.org/abs/2103.09908
 
 
 
7) Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO,
 
Chin. Phys. C 45, (2021) 023004
 
https://doi.org/10.1088/1674-1137/abd92a
 
https://arxiv.org/abs/2006.11760
 
 
 
8) Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector,
 
Nucl. Instrum. Methods A 988, (2021) 164823
 
https://doi.org/10.1016/j.nima.2020.164823
 
https://arxiv.org/abs/2007.00314
 
 
 
9) Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment,
 
https://arxiv.org/abs/2112.14450, submitted to JHEP.
 
 
 
10) Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO,
 
https://arxiv.org/abs/2204.13249, submitted to CPC.
 
 
 
11) Mass Testing and Characterization of 20-inch PMTs for JUNO,
 
https://arxiv.org/abs/2205.08629, submitted to EPJC.
 
 
 
12) Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO,
 
https://arxiv.org/abs/2205.08830, submitted to JCAP.
 
 
 
===Physics Papers (by memebers of JUNO collaboration)===
 
 
 
======Mass Ordering Proposal======
 
 
 
(1) Determination of the neutrino mass hierarchy at an intermediate baseline,
 
Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78, (2008) 111103,
 
https://doi.org/10.1103/PhysRevD.78.111103
 
 
 
(2) Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos,
 
Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79,(2009) 073007
 
https://doi.org/10.1103/PhysRevD.79.073007
 
 
 
(3) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos,
 
Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan,
 
Phys. Rev. D 88, (2013) 013008
 
https://doi.org/10.1103/PhysRevD.88.013008
 
 
 
======Reactor Neutrinos======
 
 
 
(1) Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?
 
Yu-Feng Li, Yifang Wang, Zhi-zhong Xing,
 
Chin.Phys.C 40 (2016) 9, 091001.
 
https://doi.org/10.1088/1674-1137/40/9/091001
 
https://arxiv.org/abs/1605.00900
 
 
 
(2) Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations,
 
Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu,
 
Phys.Lett.B 782 (2018) 578-588
 
https://doi.org/10.1016/j.physletb.2018.05.079
 
https://arxiv.org/abs/1802.04964
 
 
 
(3) Synergies and prospects for early resolution of the neutrino mass ordering,
 
Anatael Cabrera, et al.,
 
Sci.Rep. 12 (2022) 1, 5393
 
https://doi.org/10.1038/s41598-022-09111-1
 
https://arxiv.org/abs/2008.11280
 
 
(4) Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments,
 
Zhaokan Chen, et al.,
 
Eur.Phys.J.C 80 (2020) 12, 1112.
 
https://doi.org/10.1140/epjc/s10052-020-08664-7
 
https://arxiv.org/abs/2004.11659
 
 
(5) Why matter effects matter for JUNO,
 
Amir N.Khan, Hiroshi Nunokawa, Stephen J.Parke,
 
Phys.Lett.B 803 (2020) 135354.
 
https://doi.org/10.1016/j.physletb.2020.135354
 
https://arxiv.org/abs/1910.12900
 
 
 
(6) A framework for testing leptonic unitarity by neutrino oscillation experiments,
 
C.S. Fong, H. Minakata, H. Nunokawa,
 
JHEP 2017 (2017) 114.
 
https://doi.org/10.1007/JHEP02(2017)114
 
https://arxiv.org/abs/1609.08623
 
 
 
(7) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors,
 
Hongxin Wang et al.,
 
Nucl.Phys.B 918 (2017) 245-256.
 
https://doi.org/10.1016/j.nuclphysb.2017.03.002
 
https://arxiv.org/abs/1602.04442
 
 
 
======Solar Neutrinos======
 
 
 
(1) Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment,
 
Lukas Bieger, et al.,
 
https://arxiv.org/abs/2109.10782
 
 
 
(2) Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors,
 
Ziping Ye, Feiyang Zhang, Donglian Xu, Jianglai Liu,
 
Chin.Phys.Lett. 38 (2021) 11, 111401.
 
https://doi.org/10.1088/0256-307X/38/11/111401
 
https://arxiv.org/abs/2103.11771
 
 
 
(3) Sensitivity to neutrino-antineutrino transitions for boron neutrinos,
 
S.J.Li, J.J.Ling, N.Raper, M.V.Smirnov,
 
Nucl.Phys.B 944 (2019) 114661.
 
https://doi.org/10.1016/j.nuclphysb.2019.114661
 
https://arxiv.org/abs/1905.05464
 
 
 
======Atmospheric Neutrinos======
 
 
 
(1) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions,
 
Jie Cheng, Yu-Feng Li, Liang-Jian Wen, and Shun Zhou
 
Phys.Rev.D 103 (2021) 5, 053001
 
https://doi.org/10.1103/PhysRevD.103.053001
 
https://arxiv.org/abs/2008.04633
 
 
 
(2) Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements,
 
Jie Cheng, Yu-Feng Li, Hao-Qi Lu, and Liang-Jian Wen
 
Phys.Rev.D 103 (2021) 5, 053002
 
https://doi.org/10.1103/PhysRevD.103.053002
 
https://arxiv.org/abs/2009.04085
 
 
 
(3) Low energy neutrinos from stopped muons in the Earth,
 
Wan-Lei Guo,
 
Phys.Rev.D 99 (2019) 7, 073007.
 
https://doi.org/10.1103/PhysRevD.99.073007
 
https://arxiv.org/abs/1812.04378
 
 
 
======Supernova Neutrinos======
 
 
(1) Constraining sterile neutrinos by core-collapse supernovae with multiple detectors,
 
Jian Tang, TseChun Wang, Meng-Ru Wu
 
JCAP 10 (2020) 038
 
https://doi.org/10.1088/1475-7516/2020/10/038
 
https://arxiv.org/abs/2005.09168
 
 
 
(2) Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors,
 
Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou
 
JCAP 05 (2020) 049
 
https://doi.org/10.1088/1475-7516/2020/05/049
 
https://arxiv.org/abs/2003.03982
 
 
(3) Model-independent approach to the reconstruction of multiflavor supernova neutrino energy spectra,
 
Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou
 
Phys.Rev.D 99 (2019) 12, 123009
 
https://doi.org/10.1103/PhysRevD.99.123009
 
https://arxiv.org/abs/1903.04781
 
 
(4) Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors,
 
Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou
 
Phys.Rev.D 97 (2018) 6, 063014
 
https://doi.org/10.1103/PhysRevD.97.063014
 
https://arxiv.org/abs/1712.06985
 
 
 
(5) Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors,
 
Jia-Shu Lu, Yu-Feng Li, and Shun Zhou
 
Phys.Rev.D 94 (2016) 2, 023006
 
https://doi.org/10.1103/PhysRevD.94.023006
 
https://arxiv.org/abs/1605.07803
 
 
 
(6) Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO,
 
Jia-Shu Lu, Jun Cao, Yu-Feng Li, and Shun Zhou
 
JCAP 05 (2015) 044
 
https://doi.org/10.1088/1475-7516/2015/05/044
 
https://arxiv.org/abs/1412.7418
 
 
 
(7) Testing MSW effect in Supernova Explosion with Neutrino event rates,
 
Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin
 
https://arxiv.org/abs/2001.08543
 
 
 
======Diffuse Supernova Neutrino Background======
 
 
 
(1) Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO,
 
Yu-Feng Li, Mark Vagins, Michael Wurm
 
Universe 8 (2022) 3, 181
 
https://doi.org/10.3390/universe8030181
 
https://arxiv.org/abs/2201.12920
 
 
 
======Geo Neutrinos======
 
 
 
(1) JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO,
 
RuohanGao, et al,
 
Phys.Earth Planet.Interiors 299 (2020) 106409.
 
https://doi.org/10.1016/j.pepi.2019.106409
 
https://arxiv.org/abs/1903.11871
 
 
(2) Non-negligible oscillation effects in the crustal geoneutrino calculations,
 
Xin Mao, Ran Han, and Yu-Feng Li,
 
Phys.Rev.D 100 (2019) 11, 113009.
 
https://doi.org/10.1103/PhysRevD.100.113009
 
https://arxiv.org/abs/1911.12302
 
 
 
(3) GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment
 
M. Reguzzoni, et al,
 
J.Geophys.Res.Solid Earth 124 (2019) 4, 4231-4249.
 
https://doi.org/10.1029/2018JB016681
 
https://arxiv.org/abs/1901.01945
 
 
 
(4) Potential of Geo-neutrino Measurements at JUNO,
 
Ran Han, Yu-Feng Li, Liang Zhan, William F. McDonough, Jun Cao, Livia Ludhova,
 
Chin.Phys.C 40 (2016) 3, 033003.
 
https://doi.org/10.1088/1674-1137/40/3/033003
 
https://arxiv.org/abs/1510.01523
 
 
 
======Dark Matter======
 
 
 
(1) Constraining primordial black holes as dark matter at JUNO,
 
Sai Wang, Dong-Mei Xia, Xukun Zhang, Shun Zhou, Zhe Chang,
 
Phys.Rev.D 103 (2021) 4, 043010.
 
https://doi.org/10.1103/PhysRevD.103.043010
 
https://arxiv.org/abs/2010.16053
 
 
 
(2) Detecting electron neutrinos from solar dark matter annihilation by JUNO,
 
Wan-Lei Guo,
 
JCAP 01 (2016) 039.
 
https://doi.org/10.1088/1475-7516/2016/01/039
 
https://arxiv.org/abs/1511.04888
 
 
 
======Nucleon Decay======
 
 
 
(1) Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code,
 
Hang Hu, Wan-Lei Guo, Jun Su, Wei Wang, Cenxi Yuan,
 
Phys.Lett.B 831 (2022) 137183
 
https://doi.org/10.1016/j.physletb.2022.137183
 
https://arxiv.org/abs/2108.11376
 
 
 
(2) Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun,
 
Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang,
 
JCAP, in press.
 
https://arxiv.org/abs/2201.02386
 
 
 
======New Physics======
 
 
(1) Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays,
 
Jun Cao, et al,
 
Chin.Phys.C 44 (2020) 3, 031001.
 
https://doi.org/10.1088/1674-1137/44/3/031001
 
https://arxiv.org/abs/1908.08355
 
 
 
(2) Physics potential of searching for 0νββ decays in JUNO,
 
Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao,
 
Chin.Phys.C 41 (2017) 5, 053001.
 
https://doi.org/10.1088/1674-1137/41/5/053001
 
https://arxiv.org/abs/1610.07143
 
 
 
(3) Exploring detection of nuclearites in a large liquid scintillator neutrino detector,
 
Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang,
 
Phys.Rev.D 95 (2017) 1, 015010.
 
https://doi.org/10.1103/PhysRevD.95.015010
 
https://arxiv.org/abs/1611.00166
 
 
 
(4) The sensitivity to electron antineutrinos from the binary neutron star systems at medium-baseline reactor neutrino oscillation experiment(s),
 
Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang,
 
JHEAp 28 (2020) 1-9.
 
https://doi.org/10.1016/j.jheap.2020.10.001
 
 
 
(5) Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector,
 
Zhaokan Cheng, WeiWang, Chan Fai Wong, Jingbo Zhang,
 
Nucl.Phys.B 964 (2021) 115304.
 
https://doi.org/10.1016/j.nuclphysb.2021.115304
 
https://arxiv.org/abs/2009.06450
 
 
(6) Constraining visible neutrino decay at KamLAND and JUNO,
 
Yago P. Porto-Silva, et al.,
 
Eur.Phys.J.C 80 (2020) 10, 999.
 
https://doi.org/10.1140/epjc/s10052-020-08573-9
 
https://arxiv.org/abs/2002.12134
 
 
 
(7) Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment,
 
Yu-Feng Li, Zhen-hua Zhao,
 
Phys.Rev.D 90 (2014) 11, 113014.
 
https://doi.org/10.1103/PhysRevD.90.113014
 
https://arxiv.org/abs/1409.6970
 
 
 
(8) Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions,
 
Yu-Feng Li, Ye-Ling Zhou,
 
Nucl.Phys.B 888 (2014) 137-153.
 
https://doi.org/10.1016/j.nuclphysb.2014.09.013
 
https://arxiv.org/abs/1408.6301
 
 
 
======Others======
 
 
 
(1) Potential of octant degeneracy resolution in JUNO,
 
M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling
 
Chin.Phys.C 43 (2019) 3, 033001.
 
https://doi.org/10.1088/1674-1137/43/3/033001
 
https://arxiv.org/abs/1808.03795
 
 
 
(2) The possibility of leptonic CP-violation measurement with JUNO,
 
M.V. Smirnov, Zhoujun Hu, Shuaijie Li, Jiajie Ling,
 
Nucl.Phys.B 931 (2018) 437-445.
 
https://doi.org/10.1016/j.nuclphysb.2018.05.003
 
https://arxiv.org/abs/1802.03677
 
 
 
===Technical Papers (by memebers of JUNO collaboration)===
 
 
 
======Central Detector======
 
 
 
(1) The stress measurement system for the JUNO Central Detector acrylic panels,
 
X. Yang, et al.,
 
JINST 16 (2021) 12, P12040.
 
https://doi.org/10.1088/1748-0221/16/12/P12040
 
 
 
(2) Structure design and compression experiment of the supporting node for JUNO PMMA detector,
 
Xiaohui Qian, et al.,
 
Radiat Detect Technol Methods 4 (2020) 345-355.
 
https://doi.org/10.1007/s41605-020-00190-0
 
 
(3) A practical approach of high precision U and Th concentration measurement in acrylic,
 
Chuanya Cao, et al.,
 
Nucl.Instrum.Meth.A 1004 (2021) 165377.
 
https://doi.org/10.1016/j.nima.2021.165377
 
https://arxiv.org/abs/2011.06817
 
 
 
(4) Co-precipitation approach to measure amount of 238U in copper to sub-ppt level using ICP-MS,
 
Ya-Yun Ding, Meng-Chao Liu, Jie Zhao, Wen-Qi Yan, Liang-Hong Wei, Zhi-Yong Zhang, Liang-Jian Wen,
 
Nucl.Instrum.Meth.A 941 (2019) 162335.
 
https://doi.org/10.1016/j.nima.2019.162335
 
https://arxiv.org/abs/2003.12229
 
 
 
(5) The measurement system of acrylic transmittance for the JUNO central detector,
 
Xiaoyu Yang, et al.,
 
Radiat Detect Technol Methods 4, 284–292 (2020).
 
https://doi.org/10.1007/s41605-020-00182-0
 
 
(6) FE Analysis on the Thermoforming Behaviour of Large Spherical PMMA Panelapplied in JUNO,
 
Xiaohui Qian, et al.,
 
IOP Conf. Ser.: Mater. Sci. Eng. 774 012148.
 
https://doi.org/10.1088/1757-899x/774/1/012148
 
 
 
(7) Thermal reliability analysis of the central detector of JUNO,
 
Xiaoyu Yang, et al.,
 
Radiat Detect Technol Methods 3, 64 (2019).
 
https://doi.org/10.1007/s41605-019-0142-y
 
 
 
(8) The design of the small prototype for the central detector of JUNO,
 
Xiaoyu Yang, et al,
 
Radiat Detect Technol Methods 2, 46 (2018).
 
https://doi.org/10.1007/s41605-018-0073-z
 
 
 
(9) 222Rn contamination mechanisms on acrylic surfaces,
 
M. Nastasi, et al.,
 
https://arxiv.org/abs/1911.04836
 
 
 
======Liquid Scintillator======
 
 
 
(1) Measurements of Rayleigh Ratios in Linear Alkylbenzene,
 
Miao Yu et al.,
 
https://arxiv.org/abs/2203.03126
 
 
 
(2) Exploring the intrinsic energy resolution of liquid scintillator to approximately 1 MeV electrons,
 
Y. Deng, et al.,
 
JINST 17 (2022) 04, P04018.
 
https://doi.org/10.1088/1748-0221/17/04/P04018
 
https://arxiv.org/abs/2203.05200
 
 
 
(3) Development of water extraction system for liquid scintillator purification of JUNO
 
Y. Deng, et al.,
 
Nucl.Instrum.Meth.A 1027 (2022) 166251.
 
https://doi.org/10.1016/j.nima.2021.166251
 
https://arxiv.org/abs/2109.07317
 
 
 
(4) The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay,
 
Wenqi Yan, et al.,
 
Nucl.Instrum.Meth.A 996 (2021) 165109.
 
https://doi.org/10.1016/j.nima.2021.165109
 
https://arxiv.org/abs/2011.05655
 
 
 
(5) Radon activity measurement of JUNO nitrogen,
 
X. Yu, et al.,
 
JINST 15 (2020) 09, P09001.
 
https://doi.org/10.1088/1748-0221/15/09/P09001
 
 
 
(6) Thermal diffusivity and specific heat capacity of linear alkylbenzene
 
Wenjie Wu, et al.,
 
Phys.Scripta 94 (2019) 10, 105701.
 
https://doi.org/10.1088/1402-4896/ab1cea
 
https://arxiv.org/abs/1904.12147
 
 
 
(7) Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO,
 
Mario Schwarz, et al.,
 
Nucl.Instrum.Meth.A 922 (2019) 64-70.
 
https://doi.org/10.1016/j.nima.2018.12.068.
 
https://arxiv.org/abs/1804.09456
 
 
 
(8) Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment,
 
Dewen Cao, et al.,
 
Nucl.Instrum.Meth.A 927 (2019) 230-235.
 
https://doi.org/10.1016/j.nima.2019.01.077
 
https://arxiv.org/abs/1801.08363
 
 
 
(9) Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene,
 
Xiang Zhou, et al.,
 
Phys. Scr. 90 (2015) 055701.
 
https://doi.org/10.1088/0031-8949/90/5/055701
 
https://arxiv.org/abs/1408.0877
 
 
 
(10) Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors,
 
Xiang Zhou, et al.,
 
Rev. Sci. Instrum. 86 (2015) 073310.
 
https://doi.org/10.1063/1.4927458
 
https://arxiv.org/abs/1504.00987
 
 
 
(11) Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors,
 
Xiang Zhou, et al.,
 
Eur. Phys. J. C 75 (2015) 545.
 
https://doi.org/10.1140/epjc/s10052-015-3784-z
 
https://arxiv.org/abs/1504.00986
 
 
 
======PMT Instrumentation======
 
 
 
(1) A container-based facility for testing 20'000 20-inch PMTs for JUNO,
 
B. Wonsak, et al.,
 
JINST 16 (2021) 08, T08001.
 
https://doi.org/10.1088/1748-0221/16/08/T08001
 
https://arxiv.org/abs/2103.10193
 
 
 
(2) Gain and charge response of 20” MCP and dynode PMTs
 
H.Q. Zhang, et al.,
 
JINST 16 (2021) 08, T08009.
 
https://doi.org/10.1088/1748-0221/16/08/T08009
 
https://arxiv.org/abs/2103.14822
 
 
 
(3) A quantitative approach to select PMTs for large detectors,
 
L.J. Wen, et al.,
 
Nucl.Instrum.Meth.A 947 (2019) 162766.
 
https://doi.org/10.1016/j.nima.2019.162766
 
https://arxiv.org/abs/1903.12595
 
 
 
(4) A study of the new hemispherical 9-inch PMT,
 
F. Luo, et al.,
 
JINST 14 (2019) 02, T02004.
 
https://doi.org/10.1088/1748-0221/14/02/T02004
 
https://arxiv.org/abs/1801.02737
 
 
 
(5) Study on the large area MCP-PMT glass radioactivity reduction,
 
Xuantong Zhang, et al.,
 
Nucl.Instrum.Meth.A 898 (2018) 67-71.
 
https://doi.org/10.1016/j.nima.2018.05.008
 
https://arxiv.org/abs/1710.09965
 
 
 
(6) Wide field-of-view and high-efficiency light concentrator,
 
Yu Zhi, Ye Liang, Zhe Wang, Shaomin Chen,
 
Nucl.Instrum.Meth.A 885 (2018) 114-118.
 
https://doi.org/10.1016/j.nima.2017.12.003
 
https://arxiv.org/abs/1703.07527
 
 
 
======Small PMTs======
 
 
 
(1) CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes,
 
S. Conforti, et al.,
 
JINST 16 (2021) 05, P05010.
 
https://doi.org/10.1088/1748-0221/16/05/P05010
 
https://arxiv.org/abs/2012.01565
 
 
 
(2) Characterization of 3-inch photomultiplier tubes for the JUNO central detector,
 
Nan Li, et al.,
 
Radiat Detect Technol Methods 3 (2019) 6.
 
https://doi.org/10.1007/s41605-018-0085-8
 
 
(3) Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO,
 
Diru Wu, et al.,
 
https://arxiv.org/abs/2204.02612
 
 
 
======Veto Detectors======
 
 
 
(1) The study of active geomagnetic shielding coils system for JUNO,
 
G. Zhang, et al.,
 
JINST 16 (2021) 12, A12001.
 
https://doi.org/10.1088/1748-0221/16/10/T10004
 
https://arxiv.org/abs/2106.09998
 
 
 
(2) Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory
 
L.F. Xie, et al.,
 
Nucl.Instrum.Meth.A 976 (2020) 164266.
 
https://doi.org/10.1016/j.nima.2020.164266
 
https://arxiv.org/abs/1906.06895
 
 
 
(3) The development of 222Rn detectors for JUNO prototype,
 
Y. P. Zhang,, et al.,
 
Radiat Detect Technol Methods 2 (2018) 5.
 
https://doi.org/10.1007/s41605-017-0029-8
 
https://arxiv.org/abs/1710.03401
 
 
 
(4) Discriminating cosmic muons and radioactivity using a liquid scintillator fiber detector,
 
Y.P. Zhang, et al.,
 
JINST 12 (2017) 03, P03015.
 
https://doi.org/10.1088/1748-0221/12/03/P03015
 
https://arxiv.org/abs/1608.08307
 
 
 
======Electronics and Trigger======
 
 
 
(1) Embedded readout electronics R&D; for the large PMTs in the JUNO experiment,
 
M.Bellatoa, et al.,
 
Nucl.Instrum.Meth.A 985 (2021) 164600.
 
https://doi.org/10.1016/j.nima.2020.164600
 
https://arxiv.org/abs/2003.08339
 
 
 
(2) A 4 GHz phase locked loop design in 65 nm CMOS for the Jiangmen Underground Neutrino Observatory detector,
 
N. Parkalian, et al., JINST 13 (2018)02, P02010.
 
https://doi.org/10.1088/1748-0221/13/02/p02010
 
 
 
======Calibration======
 
 
 
(1) A Precise Method to Determine the Energy Scale and Resolution using Gamma Calibration Sources in a Liquid Scintillator Detector,
 
Feiyang Zhang, et al.,
 
JINST 16 (2021) T08007.
 
https://doi.org/10.1088/1748-0221/16/08/T08007
 
https://arxiv.org/abs/2106.06424
 
 
 
(2) The automatic calibration unit in JUNO,
 
Jiaqi Hui, et al.,
 
JINST 16 (2021) 08, T08008.
 
https://doi.org/10.1088/1748-0221/16/08/T08008
 
https://arxiv.org/abs/2104.02579
 
 
 
(3) Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO,
 
Yuhang Guo, et al.,
 
JINST 16 (2021) T07005.
 
https://doi.org/10.1088/1748-0221/16/07/T07005
 
https://arxiv.org/abs/2103.04602
 
 
 
(4) Cable loop calibration system for Jiangmen Underground Neutrino Observatory,
 
Yuanyuan Zhang, et al.,
 
Nucl.Instrum.Meth.A 988 (2021) 164867.
 
https://doi.org/10.1016/j.nima.2020.164867
 
https://arxiv.org/abs/2011.02183
 
 
 
(5) Design of the Guide Tube Calibration System for the JUNO experiment,
 
Yuhang Guo, et al.,
 
JINST 14 (2019) 09, T09005.
 
https://doi.org/10.1088/1748-0221/14/09/T09005
 
https://arxiv.org/abs/1905.02077
 
 
 
(6) Ultrasonic positioning system for the calibration of central detector,
 
Guo-Lei Zhu, et al.,
 
Nucl.Sci.Tech. 30 (2019) 1, 5.
 
https://doi.org/10.1007/s41365-018-0530-x
 
 
 
======TAO======
 
 
 
(1) Calibration Strategy of the JUNO-TAO Experiment,
 
Hangkun Xu, et al.,
 
https://arxiv.org/abs/2204.03256
 
 
 
(2) A liquid scintillator for a neutrino Detector working at -50 degree,
 
Zhangquan Xie, et al.,
 
Nucl.Instrum.Meth.A 1009 (2021) 165459.
 
https://doi.org/10.1016/j.nima.2021.165459
 
https://arxiv.org/abs/2012.11883
 
 
 
(3) Study of Silicon Photomultiplier Performance at Different Temperatures,
 
N.Anfimov, et al.,
 
Nucl.Instrum.Meth.A 997 (2021) 165162.
 
https://doi.org/10.1016/j.nima.2021.165162
 
https://arxiv.org/abs/2005.10665
 
 
 
(4) Reflectance of Silicon Photomultipliers in Linear Alkylbenzene,
 
W. Wang, et al.,
 
Nucl.Instrum.Meth.A 973 (2020) 164171.
 
https://doi.org/10.1016/j.nima.2020.164171
 
https://arxiv.org/abs/2002.04218
 
 
 
(5) Evaluation of the KLauS ASIC at low temperature,
 
Wei Wang, et al.,
 
Nucl.Instrum.Meth.A 996 (2021) 165110.
 
https://doi.org/10.1016/j.nima.2021.165110
 
https://arxiv.org/abs/2011.05643
 
 
 
======Simulation and Software Framework======
 
 
 
(1) A new optical model of a photomultiplier tube,
 
Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang,
 
Eur.Phys.J.C 82 (2022) 4, 329.
 
https://doi.org/10.1140/epjc/s10052-022-10288-y
 
https://arxiv.org/abs/2204.02703
 
 
 
(2) Improving the Energy Resolution of the Reactor Antineutrino Energy Reconstruction with Positron Direction,
 
Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang,
 
RDTM, 4 (2020) 356–361.
 
https://doi.org/10.1007/s41605-020-00191-z
 
https://arxiv.org/abs/2005.05034
 
 
 
(3) A complete optical model for liquid-scintillator detectors,
 
Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen,
 
Nucl.Instrum.Meth.A 967 (2020) 163860.
 
https://doi.org/10.1016/j.nima.2020.163860
 
https://arxiv.org/abs/2003.12212
 
 
 
(4) A semi-analytical energy response model for low-energy events in JUNO,
 
P. Kampmann, Y. Cheng, L. Ludhova,
 
JINST 15 (2020) 10, P10007.
 
https://doi.org/10.1088/1748-0221/15/10/P10007
 
https://arxiv.org/abs/2006.03461
 
 
 
(5) Capability of detecting low energy events in JUNO Central Detector,
 
X. Fang, et al.,
 
JINST 15 (2020) 03, P03020.
 
https://doi.org/10.1088/1748-0221/15/03/P03020
 
https://arxiv.org/abs/1912.01864
 
 
 
(6) Fast Muon Simulation in the JUNO Central Detector,
 
Tao Lin, et al.,
 
Chin.Phys.C 40 (2016) 8, 086201.
 
https://doi.org/10.1088/1674-1137/40/8/086201
 
https://arxiv.org/abs/1602.00056
 
 
(7) GDML based geometry management system for offline software in JUNO,
 
Kaijie Li, et al.,
 
Nucl.Instrum.Meth.A 908 (2018) 43-48.
 
https://doi.org/10.1016/j.nima.2018.08.008
 
 
 
(8) A ROOT Based Event Display Software for JUNO,
 
Z. You, et al. JINST 13 (2018) 02, T02002.
 
https://doi.org/10.1088/1748-0221/13/02/T02002
 
https://arxiv.org/abs/1712.07603
 
 
 
(9) Design and Development of JUNO Event Data Model,
 
Teng Li, et al.,
 
Chin.Phys.C 41 (2017) 6, 066201.
 
https://doi.org/10.1088/1674-1137/41/6/066201
 
https://arxiv.org/abs/1702.04100
 
 
 
======Reconstruction======
 
 
 
(1) Improving the machine learning based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs,
 
Zi-Yuan Li, et al.,
 
https://arxiv.org/abs/2205.04039
 
 
 
(2) Reconstruction of Muon Bundle in the JUNO Central Detector,
 
Cheng-Feng Yang, et al.,
 
https://arxiv.org/abs/2201.11321
 
 
 
(3) Vertex and energy reconstruction in JUNO with machine learning methods,
 
Zhen Qian, et al.,
 
Nucl.Instrum.Meth.A 1010 (2021) 165527.
 
https://doi.org/10.1016/j.nima.2021.165527
 
https://arxiv.org/abs/2101.04839
 
 
(4) Improving the energy uniformity for large liquid scintillator detectors,
 
Guihong Huang, et al.,
 
Nucl.Instrum.Meth.A 1001 (2021) 165287.
 
https://doi.org/10.1016/j.nima.2021.165287
 
https://arxiv.org/abs/2102.03736
 
 
 
(5) Event vertex and time reconstruction in large-volume liquid scintillator detectors,
 
Zi-Yuan Li, et al.,
 
Nucl.Sci.Tech. 32 (2021) 5, 49.
 
https://doi.org/10.1007/s41365-021-00885-z
 
https://arxiv.org/abs/2101.08901
 
 
(6) Particle Identification at MeV Energies in JUNO,
 
H. Rebber, L. Ludhova, B. Wonsak and Y. Xu,
 
JINST 16 (2021) 01, P01016.
 
https://doi.org/10.1088/1748-0221/16/01/P01016
 
https://arxiv.org/abs/2007.02687
 
 
 
(7) Comparison on PMT Waveform Reconstructions with JUNO Prototype,
 
H.Q. Zhang, et al.,
 
JINST 14 (2019) 08, T08002.
 
https://doi.org/10.1088/1748-0221/14/08/T08002
 
https://arxiv.org/abs/1905.03648
 
 
 
(8) A new method of energy reconstruction for large spherical liquid scintillator detectors,
 
W. Wu, M. He, X. Zhou and H. Qiao,
 
JINST 14 (2019) 03, P03009.
 
https://doi.org/10.1088/1748-0221/14/03/P03009
 
https://arxiv.org/abs/1812.01799
 
 
 
(9) Muon Tracking with the fastest light in the JUNO Central Detector,
 
Kun Zhang, Miao He, Weidong Li, Jilei Xu,
 
Radiat Detect Technol Methods 2 (2018) 13.
 
https://doi.org/10.1007/s41605-018-0040-8
 
https://arxiv.org/abs/1803.10407
 
 
(10) A vertex reconstruction algorithm in the central detector of JUNO,
 
Q. Liu, et al.,
 
JINST 13 (2018) 09, T09005.
 
https://doi.org/10.1088/1748-0221/13/09/T09005
 
https://arxiv.org/abs/1803.09394
 
 
(11) Muon reconstruction with a geometrical model in JUNO
 
C. Genster, et al.,
 
JINST 13 (2018) 03, T03003.
 
https://doi.org/10.1088/1748-0221/13/03/T03003
 
https://arxiv.org/abs/1906.01912
 
 
(12) Charge reconstruction in large-area photomultipliers,
 
M. Grassi, et al.,
 
JINST 13 (2018) 02, P02008.
 
https://doi.org/10.1088/1748-0221/13/02/P02008
 
https://arxiv.org/abs/1801.08690
 

Latest revision as of 13:26, 9 June 2022

Log in

Enter the JUNO Internal Webpage

Access DocDB

How to request A New Wiki Account?

When you request a new account, please write at least 20 words in personal biography to introduce who you are.
Please also write contact person (supervisor/primary investigator) info.
  • Confirm your email first.
  • Wait for the confirmation of administrator.
  • An email with temporary password will be sent to you. Change your password and login.

For any questions, contact Qiumei Ma

How to access JUNO DocDB?

1. Apply for an IHEP SSO account firstly

  https://login.ihep.ac.cn/help_collaboration.jsp 

2. Apply for join the JUNO collabroration group

3. Wait for administator's approval

Then you can access JUNO DocDB. Any problems please mail to: maqm@ihep.ac.cn

JUNO publications